

# Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents

James P. Kennett<sup>a,1</sup>, Douglas J. Kennett<sup>b</sup>, Brendan J. Culleton<sup>b</sup>, J. Emili Aura Tortosa<sup>c</sup>, James L. Bischoff<sup>d</sup>, Ted E. Bunch<sup>e</sup>, I. Randolph Daniel Jr.<sup>f</sup>, Jon M. Erlandson<sup>g</sup>, David Ferraro<sup>h</sup>, Richard B. Firestone<sup>i</sup>, Albert C. Goodyear<sup>j</sup>, Isabel Israde-Alcántara<sup>k</sup>, John R. Johnson<sup>l</sup>, Jesús F. Jordá Pardo<sup>m</sup>, David R. Kimbel<sup>n</sup>, Malcolm A. LeCompte<sup>o</sup>, Neal H. Lopinot<sup>p</sup>, William C. Mahaney<sup>q</sup>, Andrew M. T. Moore<sup>r</sup>, Christopher R. Moore<sup>j</sup>, Jack H. Ray<sup>p</sup>, Thomas W. Stafford Jr.<sup>s,t</sup>, Kenneth Barnett Tankersley<sup>u</sup>, James H. Wittke<sup>e</sup>, Wendy S. Wolbach<sup>v</sup>, and Allen West<sup>w,2</sup>

<sup>a</sup>Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106; <sup>b</sup>Department of Anthropology, Pennsylvania State University, University Park, PA 16802; <sup>c</sup>Departament Prehistoria i Arqueologia, Universitat de Valencia, E-46010 Valencia, Spain; <sup>d</sup>Berkeley Geochronology Laboratory, Berkeley, CA 94709; <sup>e</sup>Geology Program, School of Earth Science and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011; <sup>f</sup>Department of Anthropology, East Carolina University, Greenville, NC 27858; <sup>9</sup>Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403; <sup>h</sup>Viejo California Associates, Joshua Tree, CA 92252; <sup>h</sup>Lawrence Berkeley National Laboratory, Berkeley, CA 94720; <sup>j</sup>South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia, SC 29208; <sup>k</sup>Instituto de Investigaciones Metalúrgicas, Departamento de Geología y Mineralogía, Universidad Michoacana de San Nicólas de Hidalgo, 58060 Morelia, Michoacán, Mexico; <sup>h</sup>Santa Barbara Museum of Natural History, Santa Barbara, CA 93105; <sup>m</sup>Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad Nacional de Educación a Distancia, E-28040 Madrid, Spain; <sup>n</sup>Kimstar Research, Fayetteville, NC 28312; <sup>o</sup>Center of Excellence in Remote Sensing Education and Research, Elizabeth City State University, Elizabeth City, NC 27909; <sup>p</sup>Center for Archaeological Research, Missouri State University, Springfield, MO 65897; <sup>q</sup>Quaternary Surveys, Thornhill, ON, Canada L4J 1J4; <sup>f</sup>College of Liberal Arts, Rochester Institute of Technology, Rochester, NY 14623; <sup>h</sup>AMS <sup>14</sup>C Dating Centre, Department of Physics & Astronomy, University of Aarhus, 8000 Aarhus C, Denmark; <sup>†</sup>Centre for GeoGenetics, Natural History Museum of Denmark, <sup>o</sup>Department of Chemistry, DePaul University, Chicago, IL 60614; and <sup>w</sup>GeoScience Consulting, Dewey, AZ 86327

Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved June 26, 2015 (received for review April 14, 2015)

The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835–12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (~100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

Younger Dryas | comet | Bayesian | radiocarbon | synchroneity

ccording to the Younger Dryas Impact Hypothesis (YDIH) (1), a major cosmic episode of multiple airbursts/impacts occurred at  $12,800 \pm 300$  calendar years before 1950 (Cal B.P. represents calendar years before A.D. 1950, unless otherwise noted; 95% probability) or 12,950-12,650 Cal B.P. at 68% probability. This event produced the Younger Dryas boundary (YDB) layer, displaying peaks in a variable assemblage of spherules (glassy and/or magnetic—inferred to be impact ejecta and therefore, for simplicity, referred to below as impact-related spherules), high-temperature minerals and melt glass, nanodiamonds, charcoal, carbon spherules, glass-like carbon, aciniform carbon (soot), nickel, iridium, platinum, and osmium. The event may have triggered the Younger Dryas episode of abrupt climate change, contributed to the end-Pleistocene megafaunal extinctions, and initiated human population reorganization/ decline across the Northern Hemisphere (1–5). Because a temporally singular event is proposed, the YDIH requires dates on the YDB layer to be essentially isochronous across four continents within the limits of dating methods.

In a test of synchroneity, it is ideal to have numerous, highly accurate, and precise dates to develop robust chronological models (6). The term "date" represents a measured value, and "age" refers to real or modeled calendar years. However, when developing high-precision chronologies, there are multiple challenges that are amplified in Pleistocene age deposits. Modern accelerator mass spectrometry (AMS) radiocarbon (<sup>14</sup>C) measurements are typically very precise, with uncertainties of ±20 y to ±30 y at 11,000 <sup>14</sup>C years B.P., but high precision does not mean high accuracy. Numerous problems can produce erroneous ages

# **Significance**

A cosmic impact event at ~12,800 Cal B.P. formed the Younger Dryas boundary (YDB) layer, containing peak abundances in multiple, high-temperature, impact-related proxies, including spherules, melt glass, and nanodiamonds. Bayesian statistical analyses of 354 dates from 23 sedimentary sequences over four continents established a modeled YDB age range of 12,835 Cal B.P. to 12,735 Cal B.P., supporting synchroneity of the YDB layer at high probability (95%). This range overlaps that of a platinum peak recorded in the Greenland Ice Sheet and of the onset of the Younger Dryas climate episode in six key records, suggesting a causal connection between the impact event and the Younger Dryas. Due to its rarity and distinctive characteristics, the YDB layer is proposed as a widespread correlation datum.

Author contributions: J.P.K., D.J.K., B.J.C., T.E.B., W.S.W., and A.W. designed research; J.P.K., D.J.K., B.J.C., J.E.A.T., J.L.B., T.E.B., I.R.D., J.M.E., D.F., A.C.G., I.I.-A., J.R.J., J.F.J.P., D.R.K., M.A.L., N.H.L., W.C.M., A.M.T.M., C.R.M., J.H.R., T.W.S., K.B.T., W.S.W., and A.W. performed research; J.P.K., D.J.K., B.J.C., J.E.A.T., J.L.B., I.R.D., J.M.E., D.F., R.B.F., A.C.G., I.I.-A., J.R.J., J.F.J.P., M.A.L., N.H.L., W.C.M., A.M.T.M., C.R.M., J.H.R., T.W.S., K.B.T., J.H.W., W.S.W., and A.W. analyzed data; and J.P.K., D.J.K., B.J.C., J.E.A.T., I.R.D., J.M.E., D.F., A.C.G., I.I.-A., J.F.J.P., N.H.L., W.C.M., A.M.T.M., C.R.M., J.H.R., K.B.T., W.S.W., and A.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

<sup>1</sup>To whom correspondence should be addressed. E-mail: kennett@geol.ucsb.edu.

<sup>2</sup>Retired.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507146112/-/DCSupplemental.

and age reversals in stratigraphic sections (2, 7–9). For example, <sup>14</sup>C concentrations have varied unevenly over time for many reasons, including from carbon turnover in the deep oceans, fluctuations in Earth's magnetic field, the release of <sup>14</sup>C from biomass burning, influx of <sup>14</sup>C from long-period comets, and variations in cosmic radiation (solar and galactic and from supernovae; for details, see SI Appendix, Dating Information). In addition, there can be considerable uncertainty about the association of charcoal ages with paleontological and archaeological assemblages, caused by the vertical transport of charcoal in sedimentary sequences through many processes, including plant bioturbation (especially roots), animal bioturbation, and redeposition by wind, water, and ice. Furthermore, a measured <sup>14</sup>C date may be inaccurate for multiple reasons, including the old wood effect, or inbuilt age (7), as, for example, when burning a 200-y-old tree causes the fire's age to appear to be 200 y too old. Accuracy also may be affected by improper handling and pretreatment of samples before dating and by uncertainties in the current <sup>14</sup>C calibration curves. All of these problems currently make it impossible to date an end-glacial event with better than multidecadal to centennial accuracy, whether it is a Clovis campfire, mammoth kill site, or cosmic impact event. Regardless, dating uncertainties must be carefully addressed to obtain the best possible age estimates (see SI Appendix, Dating Information and Figs. S1 and S2).

Meltzer et al. (10) rejected 26 of 29 YDB sites, claiming that the ages of those sites do not fall within the previously published YDB age span of 12,950–12,650 Cal B.P. and thus could not have resulted from a single impact event (table 3 of ref. 10). Those authors criticized previous YDB age-depth models (11-13), but in doing so, they often improperly compared YDB dates by using median ages without considering inherent uncertainties, as discussed in site descriptions below and in SI Appendix.

In this contribution, we model the age of YDB deposits at 23 locations, chosen primarily because independent workers at all 23 sites had previously identified the stratum that corresponds in age to the Younger Dryas onset. In addition, at 17 of 23 sites, two or more independently published radiocarbon or optically stimulated luminescence (OSL) dates were already available, and the other 5 sites were previously dated by YDIH proponents (see Methods and SI Appendix, Tables S1 and S2 and Fig. S3, for details and map). Using Bayesian analyses, we address the following questions. (i) At each YDB site investigated, what is the best age estimate for the proxy-rich YDB layer? (ii) Do these modeled ages fall within the previously published YDB age range of 12,950-12,650 Cal B.P. (11-13)? (iii) What is the probability that the collective ages of the YDB layer resulted from a single isochronous event? (iv) If so, what is a revised probability age distribution for that event? (v) Is the modeled age of the YDB event consistent with the Younger Dryas onset, as determined by dates from the Greenland Ice Sheet, speleothems (cave deposits), lake cores, ocean cores, and tree rings? (vi) Have other researchers raised valid age-related issues (10, 14–17)?

To explore a climate connection, we modeled six records that report the age of earliest onset for the Younger Dryas, proposed to be coeval with the YDB cosmic impact event (1). We also compared all records to the age of the platinum peak reported in the Greenland Ice Sheet, interpreted by Petaev et al. (18) to mark a cataclysmic extraterrestrial impact event exactly at the earliest onset of the Younger Dryas climate episode. In addition to the 23 YDB sites, 9 sites display a variable assemblage of impact-related proxies, but they lack sufficient temporal and/or stratigraphic resolution for Bayesian statistical analysis and will be discussed only briefly.

The YDB chronology is the focus of this contribution, so, for further information about site descriptions, geological settings, archaeological and paleontological significances, and additional references, see individual sites discussed in SI Appendix. Previous papers have addressed the nature and origin of YDB impactrelated proxies in detail, and, therefore, we consider these issues only briefly here. For more information, see the table that lists representative contributions by YDIH proponents, opponents, and independent researchers (SI Appendix, Table S2).

# **Results and Discussion**

Calibrating Direct <sup>14</sup>C Dates. The process of radiocarbon calibration produces probability density functions, meaning that some unknown true age will fall within a specified age range at a certain percentage probability, e.g., 68%. In traditional statistics, those percentages are variously known as SDs or sigma ( $\sigma$ ), but in Bayesian statistics, they are referred to as credible intervals, abbreviated here as CI. (19). Here, we use 68%, 95%, and 99% CI to represent degrees of uncertainty. A single calibrated calendar year is insufficient to represent the dating uncertainties involved, and thus, a probability, such as 68% or 95% CI, should always be assigned to each date (19, 20). Michczynski (21) observed that many researchers continue to present a single point date without reporting the uncertainties, due to convenience and simplicity, but doing so yields poor estimates of true ages. This is because there is only a very small statistical likelihood, typically <0.5%, that the median or mean date of a probability distribution represents the true calendar year for an event (Fig. 1).

Meltzer et al. (page 9 of ref. 10) ostensibly agreed with the criticism of point estimates and wrote, "Using just a single point estimate—whether a median, midpoint, or weighted mean—fails to account for uncertainties in the age estimate and thus leads to questionable regression results." Later, referring to their table 3 (10), they claimed, "9 of the 11 sites in this group have predicted ages for the supposed YDB that fall outside the YD onset time span." However, they contradicted their stated position by comparing YDB single dates without using the appropriate 68% or 95% probability. Furthermore, they did not use established principles of "chronological hygiene," meaning that, for example, they sometimes used an average age calculated from multiple charcoal dates from a single stratum. That practice is inappropriate when an old wood effect has been identified, in which case, short-lived samples (twigs, seeds, etc.) or the youngest dates from a single stratum should be given priority (SI Appendix, Dating Information) (2, 22).

For the nine YDB sites rejected by Meltzer et al. (10), one or more dates were acquired directly from the layer containing YDB impact proxies, in accordance with Telford et al. (8), who concluded that the age of any short-term event is best constrained by using dates from directly within or as close as possible to the event layer. To investigate, we used the IntCal13 curve within OxCal to calibrate the dates with uncertainties and

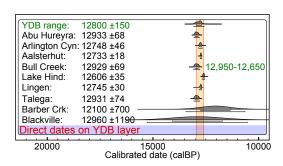



Fig. 1. Radiocarbon dates from directly within the YDB layer at nine localities. The published YDB age range is in green text; the vertical gold bar denotes the YDB age range of 12,950-12,650 Cal B.P. at 68%, which overlaps the age range distributions from all nine sites. Dates are from Kinzie et al. (9), except for Aalsterhut (15), Barber Creek (13), and Talega (13).

compared them with the previously published YDB age range. For these nine sites from four countries (United States, Canada, Germany, and Syria), geographically separated by  $\sim 12,000$  km, all nine YDB ages fall within the previously published YDB range of 12,950–12,650 Cal B.P. (Fig. 1). This finding contradicts Meltzer et al. (10) and agrees with previously published YDIH contributions (1, 9, 11–13).

Background for YDB Bayesian Analyses. Previously, proponents and opponents of the YDIH produced age-depth models using various types of regression algorithms. Even though widely used, regression models suffer from limitations, and, therefore, the use of Bayesian analyses to produce age models has become increasingly common (23–25). Such analyses can (i) calculate and compare millions of possible age models (iterations), unlike regression algorithms that calculate only one; (ii) integrate prior external information relevant to dating, e.g., the law of superposition (deepest is oldest); (iii) identify outlying dates that are too young or too old [e.g., the old wood effect (7)]; (iv) efficiently merge disparate data sets, e.g., from stratigraphy, archaeology, palynology, and climatology; (v) evaluate a cluster of dates for contemporaneity; (vi) overcome some of the inherent biases of various dating methods that tend to favor some calendar dates over others (26); and (vii) present a robust statistical model that explicitly represents all modeling assumptions and data input. Because of these advantages, Bayesian age-depth modeling is considered more robust and flexible than other types (23, 24), and, therefore, multiple disciplines now commonly use Bayesian analytical programs [e.g., BCal (27), BChron (28), OxCal (23, 24), and Bacon (25)]; see SI Appendix, Dating Information and Methods.

Bayesian Models for 23 Sites. For this paper, we used the IntCal13 calibration curve in the OxCal computer program for Bayesian statistical analysis (v4.2.4) (23, 24), which has three principal pertinent routines: <sup>14</sup>C calibration, calibrated age modeling, and contemporaneity testing. OxCal produces a modeled age distribution that is summarized in multiple ways, including as a mean age with uncertainties (±68% CI) and as a distribution of ages at 68%, 95%, and 99% CI. We used three different types of OxCal coding: (i) P\_Sequence code, in which dates are associated with depths; (ii) Sequence code with Boundaries, for placing dates into groups with specified boundaries, between which the stratigraphic order is known, but exact depths are unknown or unclear; and (iii) Sequence coding with Phases, for placing dates into chronological groups, because the stratigraphic order is unknown or unclear.

All modeled ages were rounded to the nearest 5 y. For every site, we report the age ranges at 95% CI, along with the mean age and  $\pm 68\%$  CI, because reporting both formats provides

| <sub>VDB</sub> sitt <sup>E</sup> | , g <sup>3</sup> | Jed ages | PANCET | Pang Pang | lower  | (otal of | dies / | Accepted On | da  | Cate of the | Oxies<br>Oxies | s/s/i       | dicator Pro | a lend | ains ains | is Indus | s June | Stainte Bio | indail pe  |
|----------------------------------|------------------|----------|--------|-----------|--------|----------|--------|-------------|-----|-------------|----------------|-------------|-------------|--------|-----------|----------|--------|-------------|------------|
| YDB 3                            | Mode             | s, / The | 53VQ   | 2ands     | ,<br>* | \0\\\    | 200/*  | beg m       | gin | Ogle        | EZ/C!!         | 10/1        |             | 260.   | 201/46    | M 3      |        | Vill Big    | ) 08<br>M. |
| LOCATION                         | AGE              |          | RANGE  |           | DA     | TES      | *      |             | s   | TRENG       | THS            | <u>/ (-</u> |             |        | DIS       | ADV/     | ANTA   | GES         |            |
| Abu Hureyra                      | 12825            | 55       | 12935  | 12705     | 37     | 8        | 29     | High        | _   | •           | •              |             | •           |        |           |          | •      |             |            |
| Arlington Cyn                    | 12805            | 55       | 12925  | 12695     | 16     | 0        | 16     | High        | ١.  | • •         | •              | •           | •           | •      |           |          | •      |             | •          |
| Aalsterhut                       | 12780            | 35       | 12845  | 12725     | 14     | 0        | 14     | High        | ١.  | • •         | •              |             |             | •      |           |          |        |             |            |
| Big Eddy                         | 12770            | 85       | 12935  | 12580     | 30     | 2        | 28     | High        | ١.  |             | •              |             | •           |        |           |          |        |             | •          |
| Bull Creek                       | 12840            | 75       | 12995  | 12710     | 12     | 0        | 12     | High        |     | •           | •              | •           | •           |        |           |          |        |             |            |
| Daisy Cave                       | 12730            | 320      | 13320  | 12050     | 20     | 10       | 10     | High        | Ι.  |             |                |             | •           |        |           | •        |        |             | •          |
| Lake Hind                        | 12745            | 180      | 13190  | 12550     | 12     | 1        | 11     | High        | ١.  |             | •              |             | •           |        |           |          |        | •           | •          |
| Lingen                           | 12735            | 85       | 12910  | 12520     | 2      | 0        | 2      | High        | •   |             | •              |             | •           | •      | •         |          |        |             |            |
| Sheriden Cave                    | 12840            | 120      | 13110  | 12625     | 30     | 1        | 29     | High        | .   | . •         | •              | •           | •           | •      |           |          |        |             | •          |
| Barber Creek                     | 12865            | 535      | 13945  | 11865     | 14     | 1        | 13     | Med         | •   |             | •              |             |             |        | •         | •        | •      | •           | •          |
| Blackwater                       | 12775            | 365      | 13510  | 12090     | 29     | 1        | 28     | Med         | .   | . •         | •              | •           | •           | •      |           |          | •      |             | •          |
| Indian Creek                     | 12750            | 425      | 13495  | 11805     | 8      | 0        | 8      | Med         | ١.  |             |                |             | •           |        |           |          |        |             |            |
| Lindenmeier                      | 12775            | 180      | 13195  | 12440     | 11     | 1        | 10     | Med         | .   |             | •              |             | •           |        |           |          |        |             |            |
| Murray Spgs                      | 12750            | 235      | 13195  | 12255     | 33     | 6        | 27     | Med         | ١.  | •           | •              | •           | •           | •      |           |          | •      |             |            |
| Santa Maira                      | 12785            | 295      | 13265  | 12070     | 11     | 0        | 11     | Med         | .   |             | •              |             | •           |        | •         |          |        |             | •          |
| Talega                           | 12860            | 150      | 13075  | 12545     | 12     | 0        | 12     | Med         | •   |             |                |             | •           |        |           |          |        |             | •          |
| Topper                           | 12785            | 185      | 13085  | 12365     | 11     | 0        | 11     | Med         | .   |             |                |             | •           | •      |           | •        |        |             |            |
| Blackville                       | 12820            | 1080     | 15015  | 10705     | 5      | 2        | 3      | Low         | •   |             |                |             |             |        | •         | •        | •      | •           |            |
| Lake Cuitzeo                     | 12850            | 570      | 14265  | 12195     | 22     | 11       | 11     | Low         | ١.  |             | •              | •           |             |        | •         | •        | •      |             | •          |
| Lommel                           | 12735            | 790      | 14410  | 11325     | 17     | 1        | 16     | Low         |     |             | •              |             | •           | •      | •         | •        |        |             |            |
| Melrose                          | 12255            | 2405     | 17185  | 7710      | 3      | 1        | 2      | Low         | •   |             |                |             |             |        | •         | •        | •      | •           | •          |
| Mucunuque                        | 12845            | 630      | 13550  | 11335     | 3      | 0        | 3      | Low         |     |             | •              |             |             |        | •         |          |        |             |            |
| Ommen                            | 12750            | 560      | 13605  | 11425     | 2      | 0        | 2      | Low         |     |             | •              |             |             | •      | •         | •        | •      |             |            |
| Chobot                           |                  | •        |        |           | 3      |          |        | Х           | 7   |             | •              |             | •           |        | •         | •        | •      | •           |            |
| Gainey                           |                  | •        | •      |           | 5      | •        |        | Х           | '   |             |                |             | •           |        | •         | •        | •      | •           | •          |
| Kangerlussuaq                    |                  | •        | •      | •         | 2      | •        | •      | Х           | '   |             | •              | •           | •           | •      | •         | •        | •      | •           | •          |
| Kimbel Bay                       |                  | •        | •      | •         | 7      | •        | •      | Х           | '   |             |                | •           | •           | •      | •         | •        | •      | •           | •          |
| Morley                           |                  |          | •      |           |        | •        |        | Х           |     |             | •              |             | •           |        | •         | •        | ٠      | •           |            |
| Mt.Viso                          |                  | •        | •      | •         |        | •        | •      | Х           | '   |             | •              | •           | •           | •      | •         | •        | •      | •           |            |
| Newtonville                      |                  |          | •      |           | 2      | •        |        | Х           |     |             | •              |             | •           |        | •         | •        | ٠      | •           |            |
| Paw Paw Cove                     |                  | •        | •      |           | 1      | •        |        | Х           | '   |             | •              |             | •           |        | •         |          | •      |             | •          |
| Watcombe                         | •                | •        |        |           | 2      |          |        | Х           | '   |             | •              |             |             |        | •         |          | •      | •           |            |

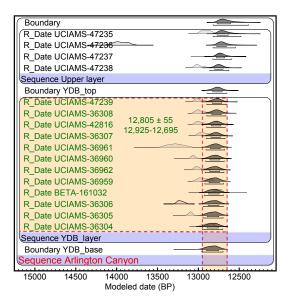
Fig. 2. YDB site details. LOCATION column lists sites. AGE columns show Bayesian modeled ages at 68%; RANGE is at 95% CI. DATE columns list total dates used, dates accepted, and dates rejected by OxCal as outliers. QUALITY ranks as high, medium, low, and not modeled. STRENGTHS and DISADVANTAGES are listed by category.

Kennett et al. PNAS Early Edition | **3 of 10** 

greater clarity. After analyses of 354 dates at 23 YDB sites, the chronology for each site was ranked according to estimated quality, ranging from high to low, as discussed below (summarized in Fig. 2; for OxCal's coding, see *SI Appendix, Coding*).

**High-Quality Chronologies.** Bayesian statistical models for 9 of 23 sites are discussed in this section and in *SI Appendix*. These sites are considered high quality because they (i) mostly have <sup>14</sup>C dates from directly within the proxy-rich sample extracted from the YDB layer; (ii) have a high total number of dates per site (avg. 19 dates); (iii) have lower uncertainties than lesser quality dates (avg. 112 y); (iv) typically contain multiple temporally diagnostic indicators, including sedimentary and paleobiological records; and/or (v) usually contain temporally diagnostic cultural artifacts and megafaunal remains.

Abu Hureyra, Syria. This site was located on an archaeological mound, or "tell," ~14 km west of Al Thawra, Syria, and is now inundated by Lake Assad (29). The 5-cm-thick YDB sample was at a depth of 402.5–407.5 cm below surface (cmbs) and contained peaks in impact-related spherules, carbon spherules, nanodiamonds, and high-temperature melt glass and minerals (9, 12, 13).

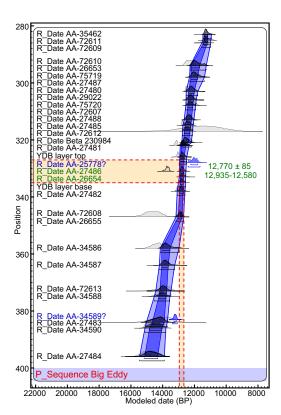

For this site, the sequence of human cultural traditions is represented as Phases 1, 2, and 3 (the latter is the youngest), with the YDB layer occurring between Phases 1 and 2 (*SI Appendix*, Fig. S4). Based on changes in pollen and seeds, the YDB layer at Abu Hureyra is coeval with the Younger Dryas onset, which initiated significant cultural changes, including the adoption of early cultivation practices that later led to the emergence of agriculture in the Middle East (5, 29).

From a  $7 \times 7$  m excavated pit, Moore et al. (29) acquired  $37^{-14}$ C dates, and OxCal generated a sequence-phase stratigraphic model using 29 of those dates and rejecting 8 dates as outliers (dates that appear either too young or too old for the statistical model). For details on rejection of outliers, see SI Appendix, Prior Information in OxCal. One <sup>14</sup>C date acquired from directly within the proxyrich YDB sample has a modeled range of 12,935–12,705 Cal B.P. at 95% (12,825  $\pm$  55 Cal B.P. at 68%). That date overlaps the previously published YDB age of 12,950–12650 Cal B.P. (SI Appendix, Fig. S4 and Table S3) (12, 13). For Abu Hureyra, Meltzer et al. (10) modeled a date of 13,044 Cal B.P. and claimed the YDB to be 144 y too old. However, they overlooked the presence of one age of  $12,825 \pm 55$  Cal B.P. at 68% CI that is directly from the proxy-rich layer and falls within the YDB age range. Also, they presented a modeled YDB age as a point date without considering dating uncertainties.

Arlington Canyon, CA. This site is located on the northwest coast of Santa Rosa Island, one of California's Northern Channel Islands, ~52 km southwest of Santa Barbara (2, 13). Kennett et al. (2) sampled a 5.03-m-thick profile that includes the YDB layer, concluding that the sequence formed within a catchment basin that underwent rapid deposition at ~12,800 cal BP. The 111-cm-thick YDB stratigraphic section from 392 to 503 cmbs contains abundance peaks of impact-related spherules, nanodiamonds, carbon spherules, and aciniform carbon.

Kennett et al. (2) provided 16 dates, 12 of which are from directly within the proxy-rich YDB horizon. From these, OxCal modeled the dates in the proxy-rich YDB interval to obtain a YDB age of 12,805 ± 55 Cal B.P. at 68% (12,925–12,695 Cal B.P. at 95%) (Fig. 3 and *SI Appendix*, Table S4). Meltzer et al. (10) presented a median point date of 13,106 Cal B.P. and rejected the age of the Arlington Canyon YDB layer as being 308 y too old. However, their conclusion is incorrect, because they did not consider the uncertainties for their date and overlooked the substantial old wood effect from long-lived conifers that were widespread on the Channel Islands until ~12,800 y ago (2, 9). *Aalsterhut, Netherlands*. Extending across northwestern Europe, the

Aalsterhut, Netherlands. Extending across northwestern Europe, the Usselo horizon is a buried eolian soil with high concentrations of charcoal at its upper boundary (15). The Usselo layer is buried by




**Fig. 3.** Age sequence model for Arlington Canyon, CA. For this and chronological figures below, the vertical dashed lines represent the previously published YDB range of 12,950–12,650 Cal B.P. (9, 13). Horizontal red dashed lines represent the bounds of the proxy-rich sample. Laboratory numbers of dates are along the left side, with dates falling within the YDB interval shown in green text. R\_Date represents <sup>14</sup>C dates, and C\_Date, when present, represents OSL, varve, and ice layer calendar dates. OxCal's individual unmodeled probability distribution curves are shown in light gray, and modeled probability distributions are shown in dark gray. Boxed areas represent separate chronostratigraphic Phases or Sequences, and the probability distributions between phases represent the likely ages of transition. Phases mainly were identified by earlier site investigators in stratigraphic order, and dates within each Phase typically are in chronological order.

an overlying regional horizon, the Coversands, and the boundary between these lithologic units marks the onset or early years of the Younger Dryas episode (15). At the Aalsterhut site, van Hoesel et al. (15) reported nanodiamonds embedded in glass-like carbon from the top of the Usselo layer at a depth of 8.25–10 cm below the top of their sampled interval (they did not report the measured depth below surface).

Combining  $^{14}$  <sup>14</sup>C dates, van Hoesel et al. (15) used OxCal to calculate an average median age for the entire 10-cm-thick section of  $^{12}$ ,733  $\pm$  18 Cal B.P. (recalibrated with IntCal13). However, 11 of the 14 dates are from the upper 8.25 cm, which contain no reported nanodiamonds. Because it is inappropriate to mix dates from nonproxy layers with those from the proxy-rich layer when dating a potential YDB layer, the average date reported by van Hoesel et al. (15) is incorrect, so we developed a new age model for the site using the same dates. OxCal used the three dates on the nanodiamond-rich interval from 8.25 cm to 10 cm to model an age range of  $^{12}$ ,845–12,725 Cal B.P. at 95% (12,780  $\pm$  35 Cal B.P. at 68%) (*SI Appendix*, Fig. S5 and Table S5).

van Hoesel et al. (15) compared their Aalsterhut age with that from Arlington Canyon and concluded that their nanodiamondrich layer was not the YDB but instead postdated it by 200 y. However, that conclusion is contradicted by their own observation that the age of the Aalsterhut nanodiamond layer overlaps the age of the YDB layer at Murray Springs. Also, they did not consider the old wood effect, which makes their average age for Arlington Canyon too old (see *Arlington Canyon*, *CA*). Finally, they compared three YDB sites, but those had been calibrated with different <sup>14</sup>C calibration curves and had not been recalibrated, as is standard practice. To investigate the purported age difference, we obtained a Bayesian age range for Aalsterhut of 12,813–12,724 Cal B.P. at 95% CI that falls completely within



**Fig. 4.** Age–depth model for Big Eddy. The lighter blue continuous curve represents 95% probability, and the darker blue represents 68%. OxCal rejected the dates in blue text as outliers, meaning that they were statistically too old or young for the model.

the range for Arlington Canyon at 12,925-12,695 Cal B.P. at 95% CI. Thus, there is no 200-y age difference.

Big Eddy, MO. This site is located ~4.5 km north of Stockton in the lower Sac River valley (13). The 8-cm-thick YDB sample contains a peak in YDB impact-related spherules at a depth of 327–335 cmbs. This site contains well-stratified, culturally rich deposits that include Clovis-age  $^{14}$ C dates on a hearth feature and associated stone tools (13). To develop an age–depth model, we used  $28^{14}$ C dates (10, 13) (Fig. 4 and SI Appendix, Table S6) and rejected 2  $^{14}$ C dates, consistent with the previous observation of redeposited charcoal (13). The age range for the YDB interval is 12,935–12,580 Cal B.P. at 95% (12,770  $\pm$  85 Cal B.P. at 68%), matching the previously published YDB age.

*Bull Creek, OK.* This site lies along Bull Creek, an intermittent stream located in the panhandle of Oklahoma, where the 9-cm-thick YDB sample (298–307 cmbs) contained peaks in impact-related spherules, aciniform carbon, and nanodiamonds, which have been independently confirmed (9, 30). Of 12 available  $^{14}$ C dates, 1 is reported at a depth of 307 cm from within the interval that included the nanodiamond-rich YDB sample (298–307 cmbs). The OxCal program generated a modeled YDB age of 12,995–12,710 Cal B.P. at 95% (12,840  $\pm$  75 Cal B.P. at 68%), falling within the published YDB age range (*SI Appendix*, Fig. 86 and Table S7).

Daisy Cave, CA. Located ~15 km west of Arlington Canyon, this cave—rockshelter complex is on the northeast coast of San Miguel Island, off the Southern California coast (9, 31). The YDB layer is at a depth of 79–81 cmbs and contains carbon spherules, glass-like carbon, and nanodiamonds. That layer's stratigraphic position is consistent with the palynological record, showing the transition from pine-dominated to oak-dominated forests in the area beginning at the Younger Dryas onset (31).

More than 20 AMS  $^{14}$ C dates (10 on charcoal and 10 on shells) were acquired from a sample pit less than 1 m away from the stratigraphically correlated YDB profile. Only the 10 high-quality charcoal dates on short-lived samples (charred twigs) from this finely stratified sequence were used to generate a stratigraphic model for the YDB at the top of a darker layer, providing an age range of  $12,730 \pm 320$  Cal B.P. at 68% (range of 13,220-12,050 Cal B.P. at 95%) (Fig. 5 and *SI Appendix*, Table S8).

*Murray Springs, AZ.* This well-known Clovis site is located 10 km east of Sierra Vista in a dry stream channel in the San Pedro Valley (13, 32, 33). The YDB layer is immediately beneath a black mat layer (33) at a depth of 246–247 cmbs and contains peaks in impact-related spherules, carbon spherules, aciniform carbon, nanodiamonds, melt glass, iridium, and nickel (1, 9, 13, 34).

We used 27 of  $33^{-14}$ C dates, acquired <40 m away from the sampling site, to produce a modeled age for the YDB of  $12,750 \pm 235$  Cal B.P. at 68% (13,195-12,255 Cal B.P. at 95%). Previously, Haynes (33) reported an average calibrated age of  $12,771 \pm 47$  Cal B.P. (recalibrated with IntCal13) based on eight dates associated with Clovis campfires from Unit F1, which is stratigraphically equivalent to the YDB layer. Likewise, Waters and Stafford (35) reported an average calibrated age of  $12,761 \pm 42$  Cal B.P. (recalibrated with IntCal13) for the Clovis occupation layer. All these modeled ages closely correspond to each other and to the published YDB age (*SI Appendix*, Fig. S7 and Table S9).

Sheriden Cave, OH. This deeply stratified karst cavern is 4 km northwest of Carey, OH (13), where the YDB is a 1.5-cm-thick, charcoal-rich layer at a depth of 44.5–46.0 cmbs containing peaks in impact-related spherules, carbon spherules, and nanodiamonds. The YDB is closely associated with bones of the youngest known specimens of two extinct megafaunal species, the giant beaver (Castoroides ohioensis) with an age of  $12,745 \pm 45$  Cal B.P. and the flat-headed peccary (Platygonus compressus) with a calibrated age of  $12,920 \pm 80$  Cal B.P. The YDB layer is also closely associated with a Clovis flaked-stone projectile point and two Clovis bone projectile points that date to  $12,765 \pm 30$  Cal B.P. Based on 29 of 30 AMS  $^{14}$ C dates from across the 18-m-wide cave complex, the modeled age for this site is  $12,840 \pm 120$  Cal B.P. at 68% (13,110–12,625 Cal B.P. at 95%) (Fig. 6 and SI Appendix, Fig. S8 and Table S10).

**Medium-Quality Chronologies.** Bayesian age-depth models for 8 of 23 sites are discussed in this section (see also *SI Appendix*). The chronologies for these sites are considered medium quality because the sites have (*i*) lower stratigraphic resolution, (*ii*) fewer

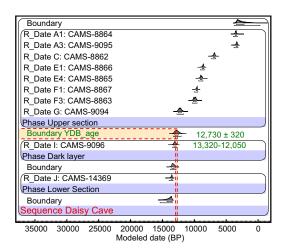



Fig. 5. Age sequence model for Daisy Cave, CA.

Kennett et al. PNAS Early Edition | **5 of 10** 

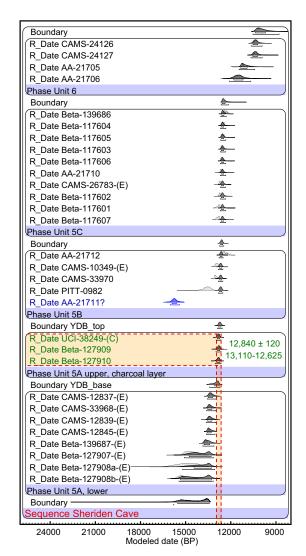



Fig. 6. Age sequence model for Sheriden Cave, OH.

dates per site (avg. 17 dates), (iii) larger uncertainties (avg. 295 y), and/or (iv) fewer temporally diagnostic indicators compared with the high-quality chronologies.

Barber Creek, NC. This next site is located ~5.7 km east of Greenville, along a paleobraidplain near the confluence of the Tar River and Barber Creek (13). The YDB layer contained a peak in impact-related spherules at a depth of 97.5–100 cmbs, immediately above an abrupt stratigraphic change from alluvial to eolian deposition that marks the Younger Dryas onset. The stratigraphic position of Archaic and Woodland cultural artifacts is consistent with the age of the YDB layer.

Wittke et al. (13) reported an OSL date of  $12,100 \pm 700$  Cal B.P. from directly within the YDB layer, but Meltzer et al. (10) rejected Barber Creek as a YDB site, because its median age is 700 y younger than the YDB. This conclusion is unfounded, because the probability distribution of that date (12,800–11,400 Cal B.P.) overlaps the published YDB range of 12,950–12,650 Cal B.P. (Fig. 7). We used 13 of 14 AMS  $^{14}$ C and OSL dates from two excavation pits ~10 m apart to produce an age model (*SI Appendix*, Table S11). The modeled age of the proxy-rich YDB layer is 12,865  $\pm$  535 Cal B.P. at 68% (13,945–11,865 Cal B.P. at 95%), a span that falls within the previously published YDB range and has greater statistical certainty than the original OSL date as the result of Bayesian modeling.

Blackwater Draw, NM. Clovis projectile points were first discovered at this site, ~18 km southeast of the city of Clovis. Sixteen sediment samples collected inside the South Bank Interpretive Center included a 1-cm-thick YDB sample at a depth of 250 cmbs (1237.55 m elevation). The YDB contained peak abundances in impact-related spherules, glass-like carbon, polycyclic aromatic hydrocarbons (PAHs), iridium, and nickel (1, 13, 36, 37). The YDB layer is located between Level C, the Clovis occupation surface, and Level D1, a diatomite layer that correlates with the black mat at >50 other sites across North America (33).

Based on stratigraphic relationships between 28 of  $29^{14}$ C dates, we generated a Bayesian age model, in which the transition at the top of the YDB layer dates to 12,775  $\pm$  365 Cal B.P. at 68% (13,510–12,090 Cal B.P. at 95%) (*SI Appendix*, Fig. S9 and Table S12). A YDB age is supported by abundant Clovis artifacts and mammoth bones in the layer immediately below the diatomite and by Folsom artifacts ~20 cm above the diatomite. YDB impact-related spherules also were distributed across the original spoil from a hand-dug Clovis-age well (38) ~50 m from the South Bank site, supporting the modeled age of the YDB layer.

Indian Creek, MT. Located ~10 km west of Townsend, Indian Creek is a well-documented archaeological site, exhibiting a black mat layer containing Folsom cultural artifacts (33). A peak in nanodiamond-rich carbon spherules was found at a depth of 790–820 cmbs in the Clovis horizon immediately below the Folsom artifacts (9). Based on eight <sup>14</sup>C dates for the sequence, the age– depth model dates the top of the YDB layer to  $12,750 \pm 425$  Cal B.P. at 68% (13,495–11,805 Cal B.P. at 95%), falling within the published YDB age span (SI Appendix, Fig. S10 and Table S13). Lake Hind, Manitoba, Canada. Located in a cutbank along the Souris River in southwestern Manitoba, this site was once part of Glacial Lake Hind, an end-Pleistocene proglacial lake. At or near the Younger Dryas onset, ice dams on the lake failed in a regional pattern of meltwater flooding, transforming the lake from deep to shallow water (ref. 1 and references therein). The top of the YDB layer at a depth of 1,096–1,098 cmbs (avg., 1,097 cm) contains peaks in nanodiamonds, carbon spherules, nickel, and iridium. Eleven AMS <sup>14</sup>C dates were accepted and one was rejected in computing an age model that includes one date from directly within the proxy-rich YDB sample (SI Appendix, Fig. S11 and Table S14). The modeled age of the YDB layer is  $12,745 \pm$ 180 Cal B.P. at 68% (13,190-12,550 Cal B.P. at 95%), falling within the published YDB age range.

Lindenmeier, CO. Located in Larimer County, Colorado, ~45 km north of Fort Collins (9), this site contains multiple Folsom-age

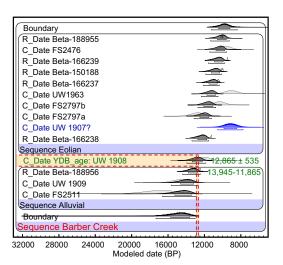



Fig. 7. Age sequence model for Barber Creek, NC.

encampments, associated with a black mat layer just above a peak in nanodiamonds found at a depth of 100-102 cm. The stratigraphic age model is based on 10 of  $11^{14}$ C dates, producing a YDB age of  $12,775 \pm 180$  Cal B.P. at 68% (13,195-12,440 Cal B.P. at 95%), which overlaps the published YDB range (*SI Appendix*, Fig. S12 and Table S15).

Lingen, Germany. Located along the Ems River in Germany, this site is approximately 1 km downstream from the bridge to Lingen (1, 13). As is typical of northwestern Europe and Aalsterhut, the Usselo layer at this site is enriched at the top in charcoal, signifying widespread biomass burning at the Younger Dryas onset. The YDB layer at a depth of 42–45 cmbs contained peaks in impact-related spherules and carbon spherules. One new  $^{14}$ C date on charcoal from directly within the YDB layer calibrates to  $12,735 \pm 85$  Cal B. P. at 68% (12,910-12,520 Cal B.P. at 95%), overlapping the YDB age range (SI Appendix, Fig. S13 and Table S16).

Lommel, Belgium. This site is 3 km west of the Lommel town center and exhibits a lithologic succession that includes the Usselo horizon, as discussed above for Aalsterhut and Lingen (1, 13). The charcoal-rich YDB layer at a depth of 47–50 cmbs contains peaks in impact-related spherules, carbon spherules, nanodiamonds, nickel, osmium, and iridium. Using 16 of 17 dates (16 OSL and 1 AMS <sup>14</sup>C), OxCal calculated a YDB age of 12,735 ± 790 Cal B.P. at 68% (14,410–11,325 Cal B.P. at 95%), within the published YDB age range (SI Appendix, Fig. S14 and Table S17). Santa Maira, Spain. This limestone cave complex is ~22 km from the Mediterranean Sea in the Alicante Province of eastern Spain (9). The YDB layer exhibits peaks in carbon spherules and nanodiamonds at a depth of 4-10 cmbs. Identification of the YDB layer is supported by the presence of temporally diagnostic changes in plant remains and cultural artifacts at the Younger Dryas onset (ref. 9 and references therein). Using 11 <sup>14</sup>C dates, OxCal generated an age sequence with a YDB age of 12,785  $\pm$  295 Cal B.P. at 68% (13,265–12,070 Cal B.P. at 95%), which overlaps the YDB age range (SI Appendix, Fig. S15 and Table S18).

Talega, CA. Located ~5 km northeast of San Clemente in the Santa Ana Mountains of Southern California, this site was sampled for an archaeological study using a platform-mounted auger to collect samples from deep boreholes (13). The proxyrich YDB sample came from within a 30-cm interval (1,485–1,515 cmbs) that contained abundance peaks in impact-related spherules and carbon spherules. For Talega, Meltzer et al. (10) modeled an age of 13,030  $\pm$  150 Cal B.P. (range: 13,180–12,880 Cal B.P.) and claimed that the date "does not fall within the temporal target of 12,800  $\pm$  150 cal BP [range: 12,950 to 12,650]," even though it clearly does overlap. Using 12 spatially separated dates from the site, OxCal generated an age-sequence model with a YDB age of 12,860  $\pm$  150 Cal B.P. at 68% (13,075–12,545 Cal B.P. at 95%), consistent with the published YDB age range (13) (SI Appendix, Fig. S16 and Table S19).

Topper, SC. This well-known Clovis-age quarry lies 17 km west of Allendale near the Savannah River (13). The YDB layer is a 5-cm-thick interval at a depth of 57.5–62.5 cmbs, exhibiting peaks in impact-related spherules, carbon spherules, nanodiamonds, nickel, chromium, and iridium intermixed with temporally diagnostic Clovis artifacts. LeCompte et al. (37) showed that YDB impact-related spherules were abundant in the sediment directly above and in contact with the chert artifacts but were absent directly beneath these artifacts. The sequence indicates that quarry use was interrupted for ~600 y, beginning near the time the impact proxies were deposited, consistent with a major population decline/reorganization at the site (3). One AMS <sup>14</sup>C date from the layer containing abundant Clovis artifacts was used with 10 spatially separated OSL dates to determine a modeled age of  $12,785 \pm 185$  Cal B.P. at 68% (13,085-12,365 Cal B.P. at 95%), which fall within the published YDB range (Fig. 8 and SI Appendix, Table S20).

**Lower-Quality Chronologies.** Bayesian age models for the remaining 6 of 23 sites are discussed in this section and are illustrated in *SI Appendix*. The sites are considered of lower quality because they (i) often include OSL dates, (ii) have larger uncertainties (avg. 1006 y), (iii) have fewer dates per site (avg. 9 dates), (iv) display more bioturbation and redeposition, and/or (v) contain fewer temporally diagnostic indicators.

Blackville, SC. This site is ~3.2 km northwest of the town of Blackville (12, 13). The YDB layer occurs at a depth of 174–190 cmbs and exhibits peak abundances in impact-related spherules, high-temperature melt glass, carbon spherules, aciniform carbon, nanodiamonds, and iridium. Wittke et al. (13) reported an OSL date of  $12,960 \pm 1190$  Cal B.P. from directly within the proxy-rich YDB layer. This age range (14,150–11,770 Cal B.P.) fully overlaps the published YDB age range, but Meltzer et al. (10) overlooked that range of uncertainties and claimed that Blackville is too old to be a YDB site. In OxCal, we used two of three OSL dates and one of two AMS  $^{14}$ C dates to develop an age sequence with a modeled YDB age of 12,820 ± 1080 Cal B.P. at 68% (15,015–10,705 Cal B. P. at 95%) (SI Appendix, Fig. S17 and Table S21).

Lake Cuitzeo, Mexico. Israde-Alcántara et al. (11) analyzed samples in a 27-m-long core from the second largest lake in Mexico, covering 380 km<sup>2</sup> ~26 km north of Morelia in the state of Michoacán. They found peaks in impact-related spherules, carbon spherules, and nanodiamonds at a depth of 277.5–282.5 cmbs. Kinzie et al. (9) acquired a new AMS <sup>14</sup>C date from a nearby shoreline sequence with a black mat layer and several tephra layers that were stratigraphically correlated with the lake core. OxCal used 11 of 22 <sup>14</sup>C dates to model a YDB age of 12,850 ± 570 Cal B.P. at 68% (14,265–12,195 Cal B.P. at 95%) (SI Appendix, Fig. S18 and Table S22). This site has a lower rank because of nine anomalously old outlier dates near the YDB layer that form two unusual, coherently linear age clusters of unknown origin.

Geochemical and paleolimnological evidence shows a significant climatic transition from warm temperatures, corresponding to the Allerød warm period, to cool temperatures, corresponding to the Younger Dryas (11). At Lake Cuitzeo, the transition occurred between two <sup>14</sup>C dates of 9,911 Cal B.P. and 18,755 Cal B.P., consistent with the age–depth model of Israde-Alcántara et al. (11). This warm-to-cool transition is identified as the onset of the Younger Dryas climatic episode, corresponding to evidence at other regional sites (11). We also investigated two alternate age–depth models, one of which excluded the shoreline date from Kinzie et al. (9) and produced a modeled YDB age of

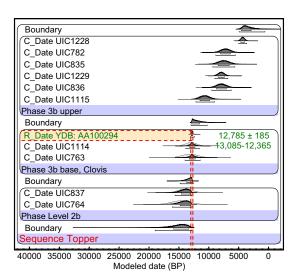



Fig. 8. Age sequence model for Topper, SC.

Kennett et al. PNAS Early Edition | 7 of 10

~15,300 Cal B.P. The other model that included the nine outliers produced a modeled YDB age of ~27,100 Cal B.P. However, both of these alternate YDB ages are inconsistent with the local and regional paleoclimatic record, and, hence, even though the lake is poorly dated, it is likely that the proxy-rich layer at Lake Cuitzeo is the same age as the YDB layer at well-dated sites. Melrose, PA. This site is approximately 1 km southwest of Melrose in northeastern Pennsylvania (12, 13). The YDB layer spans an interval from 15 cmbs to 28 cmbs and contains a remarkable array of high-temperature impact proxies, including peaks in impact-related spherules, carbon spherules, aciniform carbon, nanodiamonds, high-temperature melt glass, nickel, and osmium (9, 12, 13, 39). The YDB age sequence model was based on one new AMS  $^{14}$ C date and an OSL date of 11,701  $\pm$  1846 Cal B.P. (equivalent to 11,640 y before 1950), taken from directly within the proxy-rich YDB sample. The modeled YDB age is  $12,255 \pm$ 2,405 Cal B.P. at 68% (17,185–7,710 Cal B.P. at 95%) (SI Appendix, Fig. S19 and Table S23).

Mucuñuque (MUM7b), Venezuela. This site is at an elevation of ~4,000 m in the Merida Province on the northwestern slope of the Cordillera Sierra de Santo Domingo in the Venezuelan Andes (40) and is farther south than any other well-studied YDB site. Recessional moraines and outwash fans representing the advance of area glaciers are undated at the site but are dated to the Younger Dryas nearby. The YDB layer lies at a depth of 210–213 cmbs beneath one of the Younger Dryas outwash fans and contains peaks in impact-related spherules, carbon spherules, quartz with planar features, and high-temperature melt glass. Using three dates directly from the site, OxCal generated an age sequence model with a YDB age of 12,845 ± 630 Cal B.P. at 68% (13,550–11,335 Cal B.P. at 95%), within the published YDB range (SI Appendix, Fig. S20 and Table S24).

Ommen, Netherlands. Located 3 km west of Ommen in the province of Overijssel, this site displays the Usselo Horizon, accepted to mark the Younger Dryas onset, as at Aalsterhut, Lingen, and Lommel (1, 13). The charcoal-rich YDB layer occurs at the top of the Usselo horizon at a depth of 115–120 cmbs and contains peaks in impact-related spherules, carbon spherules, and nano-diamonds. OxCal used two AMS  $^{14}$ C dates to model the age of the YDB layer as  $12,750 \pm 560$  Cal B.P. (13,605–11,425 Cal B.P. at 95% confidence interval), consistent with the previously published YDB range (SI Appendix, Fig. S21 and Table S25).

**Other Sites.** Nine other proxy-rich sites currently lack sufficient dating for robust Bayesian analysis. Even so, the stratigraphic context of a proxy-rich layer or samples at these sites supports a YDB age. These sites are Chobot, Alberta, Canada; Gainey, MI; Kangerlussuaq, Greenland; Kimbel Bay, NC; Morley, Alberta, Canada; Mt. Viso, France/Italy; Newtonville, NJ; Paw Paw Cove, MD; and Watcombe Bottom, United Kingdom. For further discussion, see *SI Appendix, Unmodeled Sites*.

**Modeled vs. Unmodeled Ages.** By design, Bayesian models alter some dates to produce statistically stronger age models. Therefore, the question arises of whether such changes cause errors by shifting the unmodeled YDB dates too old or too young. To investigate this for each of the 23 YDB sites, we selected the date closest to the median age of the YDB layer (12,800  $\pm$  150 Cal B.P.) and calibrated each date with IntCal13 without using any Bayesian modeling (*SI Appendix, Methods*, Fig. S22 and Table S26). Of the 23 dates, 22 (96%) fall within the YDB range at 99% CI, and 19 (83%) overlap from 12,840–12,805 Cal B.P., a 35-y interval. These results indicate that Bayesian modeled ages are not substantially different from unmodeled calibrated ages.

Onset of Younger Dryas Climatic Episode. The YDIH posits that the Younger Dryas climate episode was triggered by the cosmic impact, and, therefore, the two should be contemporaneous (1).

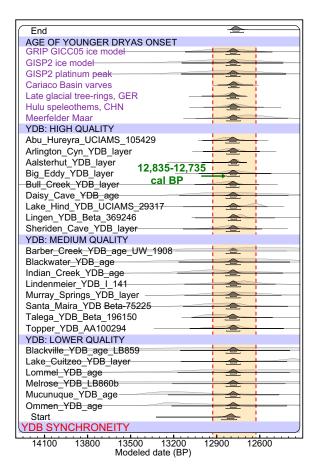



Fig. 9. Bayesian synchroneity tests of 30 records: 23 YDB sites with 1 GISP2 platinum peak and 6 independently dated climate records marking the Younger Dryas onset (purple text). For the 30 records, Sequence and Difference codes calculated the common age interval as ranging from 12,835 Cal B.P. to 12,735 Cal B.P. at 95% probability, as represented by the bottom black bar (at green arrow). Light gray probability distributions represent the individual modeled YDB ages for each record. Both light and dark gray distributions fall within the YDB age range of 12,950–12,650 Cal B.P. (yellow vertical bar).

Sometimes, multiple climate proxies are available for determining the onset of the Younger Dryas in a given record, and, if so, we used the earliest date in our Bayesian analyses, as others have done (41) (see SI Appendix, Onset of Younger Dryas and Table S27). The onset of the Younger Dryas has been independently dated in multiple records, representing a wide range of paleoenvironments in the Northern Hemisphere, including ice cores, tree rings, lake and marine cores, and speleothems, as follows [ice core dates are reported here as b2k (calendar years before base year AD 2000), consistent with glaciological convention; when compared with Cal B.P. dates (base year 1950), OxCal automatically adjusted b2k dates to Cal B.P. dates to be chronologically consistent]: (i)  $12,896 \pm 138$  b2k (13,034-12,758b2k), from several ice cores, Greenland Ice Core Project (GRIP), North Greenland Ice Core Project (NGRIP), and DYE-3 (42); (ii)  $12,890 \pm 260$  b2k (13,150-12,630 b2k), from the Greenland Ice Sheet Program (GISP2) (43); (iii) 12,887 ± 260 b2k (13,147–12,627 b2k), for a peak in impact-related platinum, coeval with the onset of Younger Dryas cooling with the same uncertainty as the GISP2 core (18); (iv)  $12,820 \pm 30$  Cal B.P. (12,850-12,790 Cal B.P.), from a count of annual varves in an ocean sediment core from the Cariaco Basin, Venezuela (44, 45); (v)  $12,812 \pm 49$  Cal B.P. (12,861–12,763 Cal B.P.), from counting tree rings in the German pine record (46); (vi)  $12,823 \pm 60$  Cal B.P. (12,883-12,763 Cal B.P.), based on oxygen isotope changes  $(\delta^{18}O)$ 

in speleothems from Hulu Cave, China (47); and (vii) 12,680  $\pm$  127 varve years (before 1950 AD; 12,807–12,553 varve years; avg. error, 1%), a varve count for cores from Meerfelder Maar, Germany (48). The first six records above show striking similarities in both mean values and age ranges. Even though the mean ages of Meerfelder Maar and other varve records appear ~200 y younger, all of the age estimates investigated overlap the previously published YDB age range of 12,950–12,650 Cal B.P. This leaves open the possibility that the Younger Dryas onset and the YDB impact event are synchronous.

YDB Datum Layer. In a number of sedimentary sections, individual types of YDB-like proxies have been observed intermittently in relatively low abundances outside of the YDB layer. However, only the YDB layer exhibits distinct abundance peaks in multiple impact-related proxies and, as such, forms a distinct, widely distributed event horizon or datum layer, similar, for example, to a geochemically distinctive volcanic tephra layer and the iridiumrich K–Pg impact layer. Existing stratigraphic information suggests that the YDB layer reflects the occurrence of a singular cosmic impact by a fragmented comet that resulted in widely distributed multiple impacts. The YDB datum concept as a singular event can be further tested through ultra-high-resolution chronostratigraphic investigations. This proposed datum layer should be synchronous over broad areas.

Synchroneity. We conducted a Bayesian test of synchroneity to explore whether the probability distributions overlap for all 23 YDB and 7 Younger Dryas onset dates and, therefore, the 30 sites could be contemporaneous. In accordance with the protocol for testing synchroneity, as described in Parnell et al. (49) and Bronk Ramsey (23), we used OxCal's Sequence and Difference codes to determine the duration of the most likely common age interval for the 30 records (Fig. 9). In this test, if the computed interval at 95% CI allows for a full overlap, i.e., includes zero years, then synchroneity is possible and is not rejected. On the other hand, if the estimated interval at 95% CI includes only nonzero values, then it is probable that the dated events occurred over a span of years, and synchroneity can be rejected. For the 30 sites, OxCal computed a minimum interval of zero years at 68% CI (range: 0–60 y). At 95% CI, the difference among the 30 sites ranges from 0 y to 130 y, and therefore, synchroneity is statistically possible and is not rejected.

Using the Difference code, we also calculated the modeled age span of the potential YDB overlap for the 30 sites. To do so, we used the Date code in OxCal with the Start and End Boundary ages to compute an age interval for the YDB event of 12,810–12,760 Cal B.P. (12,785  $\pm$  25 Cal B.P.) at 68% CI and 12,835–12,735 Cal B.P. (12,785  $\pm$  50 Cal. B.P.) at 95% CI. These ranges fall within the previously published YDB age range of 12,950–12,650 Cal B.P. For details, see *SI Appendix*, Table S28; for coding, see *SI Appendix*, Coding.

Additional support for synchroneity comes from the GISP2 ice core, in which a significant, well-defined, ~18-y-long platinum peak was found in an ice interval spanning 279 y from 13,060–12,781 b2k (18). This single, short-duration platinum peak supports the occurrence of just one, rather than multiple events during that 279-y interval.

In summary, these statistical tests produced an overlapping unmodeled range of 12,840–12,805 Cal B.P. at 95% CI and an overlapping Bayesian-modeled range of 12,835–12,735 Cal B.P.

 Firestone RB, et al. (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci USA 104(41):16016–16021.

 Kennett DJ, et al. (2008) Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the Ållerød–Younger Dryas boundary (13.0–12.9 ka). Ouat Sci Rev 27(27-28):2530–2545. Therefore, the 23 YDB age estimates appear isochronous within the limits of chronological resolution (~100 y) and could have been deposited during a single event (*SI Appendix*, Tables S26 and S28). These findings refute the claim of Meltzer et al. (10) that YDB ages are asynchronous. Furthermore, the ages of the YDB at 23 sites are statistically contemporaneous with the independently determined onset of the Younger Dryas climate episode, suggesting a causal link between the two (*SI Appendix*, Tables S26 and S28).

# Conclusions

Our results support six conclusions: (i) Bayesian analyses of 354 dates at 23 sites in 12 countries across four continents demonstrate that modeled YDB ages are consistent with the previously published range of 12,950-12,650 Cal B.P. (9, 11-13), contradicting claims that previous YDB age models are inaccurate (10, 14–16). (ii) Bayesian analyses indicate that YDB dates could be synchronous within the limits of uncertainties (~100 y), contradicting claims that YDB dates are diachronous. (iii) Comparison with calibrated, unmodeled ages shows that Bayesian modeling does not significantly alter the calculated span of the YDB event. (iv) The ages of the 23 sites are coeval with the Younger Dryas onset in six records and with the age of deposition of extraterrestrial platinum in the GISP2 ice core at the Younger Dryas onset. This temporal relationship supports a causal connection between the impact event and the Younger Dryas. (v) These analyses produced a more refined modeled age for the YDB event of 12,835-12,735 Cal B.P. at 95% CI. Although Bayesian analysis alone cannot determine unequivocally that the YDB is synchronous at these 23 sites, a single event is the most plausible conclusion, given the widespread presence of peaks in impactrelated spherules, melt glass, nanodiamonds, and other markers that all fall within a narrow temporal window of ~100 y.

# Methods

Sites for sampling were chosen because of accessibility and because Younger Dryas-aged strata already had been identified stratigraphically by independent workers (23 sites) and/or independently dated (18 of 23 sites). Radiocarbon dates (n = 354) were compiled from independent publications for 18 sites and from previous YDIH-group publications for the remaining 5 sites. We used all available dates, except in most cases where median dates were >15,000 Cal B.P. or <10,000 Cal B.P. in age; dates extending outside those limits were sometimes used when a site had only a few intermediate dates. For sites with widely scattered dates (Blackwater Draw and Murray Springs), we used only those dates within less than ~60 m of the sampled section, on the assumption that those dates would provide the most accurate age model. Testing indicated that excluding such dates had no effect on the age-depth model between 13,100 Cal B.P. and 12,500 Cal B.P. We calibrated all dates using the IntCal13 dataset within OxCal v4.2.4 r:5 (23) and then calculated age models using Bayesian analyses in OxCal, based on the Markov chain Monte Carlo algorithm. We used standard codes and commands in OxCal, including P\_Sequence, Sequence, and Phase. The Outlier code was also used because charcoal derives from vegetation that is, by necessity, older than the fire that carbonized it. OxCal's Difference code was used to explore potential synchroneity (for more details, see SI Appendix, Methods).

ACKNOWLEDGMENTS. For constructive comments that greatly improved this contribution, we are grateful to Andrew Parnell (University College Dublin, Ireland; developer of the BChron Bayesian program); Christopher Bronk Ramsey (University of Oxford, England; developer of the Bayesian program, OxCal); and Maarten Blaauw (Queen's University, Belfast, Northern Ireland; developer of the Bayesian program, Bacon). We also acknowledge the valuable time expended and efforts made by an anonymous reviewer.

- Anderson DG, Goodyear AC, Kennett J, West A (2011) Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quat Int 242(2):570–583.
- Jones TL, Kennett DJ (2012) A land impacted? The Younger Dryas Boundary event in California. Contemporary Issues in California Archaeology, eds Jones TL, Perry JE (Left Coast Press, Walnut Creek, CA), pp 37–48.

Kennett et al. PNAS Early Edition | 9 of 10

- 5. Moore AMT, Kennett DJ (2013) Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. Eurasian Prehist 10(1-2):57-66.
- Kennett DJ, Culleton BJ, Dexter J, Mensing SA, Thomas DH (2014) High-precision AMS <sup>4</sup>C chronology for Gatecliff Shelter, Nevada. *J Arch Sci* 52:621–632.
- 7. Schiffer MB (1986) Radiocarbon dating and the "old wood" problem: The case of the Hohokam chronology. J Archaeol Sci 13(1):13-30.
- 8. Telford RJ, Heegaard E, Birks HJB (2004) All age-depth models are wrong: But how badly? Ouat Sci Rev 23(1-2):1-5.
- Kinzie CR, et al. (2014) Nanodiamond-rich laver across three continents consistent with major cosmic impact at 12,800 cal BP. J Geol 122(5):475-506.
- 10. Meltzer DJ, Holliday VT, Cannon MD, Miller DS (2014) Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proc Natl Acad Sci USA 111(21):E2162–E2171.
- 11. Israde-Alcántara I, et al. (2012) Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc Natl Acad Sci USA 109(13):E738–E747.
- 12. Bunch TE, et al. (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Natl Acad Sci USA 109(28):
- 13. Wittke JH, et al. (2013) Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proc Natl Acad Sci USA 110(23):
- 14. Boslough MB, et al. (2012) Arguments and evidence against a Younger Dryas impact event. Climates, Landscapes, and Civilizations, Geophysical Monograph Series, eds Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD (Am Geophys Union, Washington, DC), Vol 198, pp 13-26.
- 15. van Hoesel A, et al. (2012) Nanodiamonds and wildfire evidence in the Usselo horizon postdate the Allerod-Younger Dryas boundary. Proc Natl Acad Sci USA 109(20): 7648-7653
- 16. van Hoesel A, et al. (2014) The Younger Dryas impact hypothesis: A critical review. Ouat Sci Rev 83(1):95-114
- Blaauw M, Holliday VT, Gill JL, Nicoll K (2012) Age models and the Younger Dryas impact hypothesis. Proc Natl Acad Sci USA 109(34):E2240, author reply E2245–E2247.
- 18. Petaev MI, Huang S, Jacobsen SB, Zindler A (2013) Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proc Natl Acad Sci USA 110(32):12917-12920.
- 19. Millard AR (2014) Conventions for reporting radiocarbon determinations. Radiocarbon 52(2):555-559.
- 20. Blaauw M (2010) Methods and code for 'classical' age-modelling of radiocarbon sequences. Quat Geochronol 5(5):512-518.
- 21. Michczynski A (2007) Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49(2):393-401.
- 22. Erlandson JM, Braje TJ, Graham MH (2008) How Old is MVII? Seaweeds, shorelines, and the pre-Clovis chronology at Monte Verde. Chile. J Island Coast Archaeol 3:277-281.
- 23. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337-360.
- 24. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55(2-3):720-730.
- 25. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474.
- 26. Bronk Ramsey C (1998) Probability and dating. Radiocarbon 40(1):461-474.
- 27. Buck CE, Christen JA, James GN (1999) BCal: An on-line Bayesian radiocarbon calibration tool. Internet Archaeol 7:dx.doi.org/10.11141/ia.7.1.

- 28. Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. J R Stat Soc Ser C 57(4):399-418.
- 29. Moore AMT, Hillman GC, Legge AJ (2000) Village on the Euphrates (Oxford Univ Press. New York).
- 30. Bement LC, et al. (2014) Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma panhandle, USA. Proc Natl Acad Sci USA 111(5):1726-1731.
- 31. Erlandson J, et al. (1996) An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38(2):355-373.
- 32. Haynes CV, Jr (1998) Arizona's famous Clovis sites could be displayed for public. Mammoth Trumpet 13(2):2-6, 20.
- 33. Haynes CV, Jr (2008) Younger Dryas "black mats" and the Rancholabrean termination in North America. Proc Natl Acad Sci USA 105(18):6520-6525.
- 34. Fayek M, Anovitz LM, Allard LF, Hull S (2012) Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona. Earth Planet Sci Lett 319: 251-258.
- 35. Waters MR, Stafford TW, Jr (2007) Redefining the age of Clovis: Implications for the peopling of the Americas. Science 315(5815):1122-1126.
- 36. Firestone RB (2009) The case for the Younger Dryas extraterrestrial impact event: Mammoth, megafauna, and Clovis extinction, 12,900 years ago. J Cosmol 2:256-285.
- 37. LeCompte MA, et al. (2012) Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proc Natl Acad Sci USA 109(44):E2960-E2969.
- 38. Haynes CV, Jr, et al. (1999) A Clovis well at the type site 11,500 B.C.: The oldest prehistoric well in America. Geoarchaeol 14(5):455-470.
- 39. Wu Y, Sharma M, LeCompte MA, Demitroff MN, Landis JD (2013) Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proc Natl Acad Sci USA 110(38):E3557-E3566.
- 40. Mahaney WC, et al. (2010) Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma. Geomorphology 116(1-2):48-57.
- 41. Steffensen JP, et al. (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680-684.
- 42. Rasmussen SO, et al. (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111(D6):D06102.
- 43. Meese DA, et al. (1997) The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. J Geophys Res 102(C12):26411-26423.
- 44. Lea DW, Pak DK, Peterson LC, Hughen KA (2003) Synchroneity of tropical and highlatitude Atlantic temperatures over the last glacial termination. Science 301(5638): 1361-1364.
- 45. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293(5533): 1304-1308.
- 46. Kromer B, et al. (2004) Late glacial <sup>14</sup>C ages from a floating, 1382-ring pine chronology. Radiocarbon 46(3):1203-1209.
- 47. Wang YJ, et al. (2001) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294(5550):2345-2348.
- 48. Brauer A, Endres C, Negendank JF (1999) Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany, Quat Int 61(1):17-25
- 49. Parnell AC, et al. (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27(19-20):

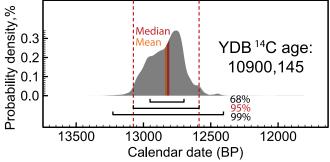
# Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas Boundary on four continents

# SUPPORTING INFORMATION

<u>Table S19.</u> <u>Topper, Table S20.</u>

| DATING INFORMATION               |                                      |
|----------------------------------|--------------------------------------|
| DATING INFORMATION               | LOWER-QUALITY CHRONOLOGIES           |
| <u>Introduction</u>              | Blackville, Fig. S17.                |
| YDB age range, Fig. S1.          | Table S21.                           |
| Dating uncertainties, Fig. S2.   | Lake Cuitzeo, Fig. S18.              |
| Prior information in OxCal       | Table S22.                           |
| SITE INFORMATION                 | Melrose, Fig. S19.                   |
| Site details, Table S1.          | Table S23.                           |
| Site location map, Fig. S3.      | Mucuñuque, Fig. S20.                 |
| YDB proxies, Table S2.           | Table S24.                           |
| HIGH-QUALITY CHRONOLOGIES        | Ommen Fig. S21.                      |
| Introduction: figures and tables | Table S25                            |
| Abu Hureyra, Fig. S4.            | UNMODELED SITES                      |
| Table S3.                        | Nine sites                           |
| Arlington Canyon, Table S4.      | OVERLAPPING DATES                    |
| Aalsterhut, Fig. S5.             | Unmodeled calibrated ages, Fig. S22. |
| Table S5.                        | Unmodeled calibrated ages, Table S26 |
| Big Eddy, Table S6.              | ONSET OF YOUNGER DRYAS               |
| Bull Creek, Fig. S6.             | Younger Dryas onset, Table S27.      |
| Table S7.                        | BAYESIAN SYNCHRONEITY TEST           |
| Daisy Cave, Table S8.            | Synchroneity, Table S28.             |
| Murray Springs, Fig. S7.         | METHODS                              |
| Table S9.                        | Bayesian analyses                    |
| Sheriden Cave, Fig. S8.          | Calculations and coding              |
| Table S10.                       | 1) Calibration                       |
| MEDIUM-QUALITY CHRONOLOGIES      | 2) Age-depth models                  |
| Barber Creek, Table S11.         | 3) Age-sequence models               |
| Blackwater Draw, Fig. S9.        | 4) Age-phase models                  |
| Table S12.                       | 5) Synchroneity test                 |
| Indian Creek, Fig. S10.          | 6) Outlier code                      |
| Table S13.                       | 7) Date code                         |
|                                  | REFERENCES                           |
| Lake Hind, Fig. S11.             |                                      |
| Table S14.                       | References                           |
| Lindenmeier, Fig. S12.           | CODING                               |
| Table S15.                       | Bayesian code for OxCal              |
| Lingen, Fig. S13.                |                                      |
| Table S16.                       |                                      |
| Lommel, Fig. S14.                |                                      |
| Table S17.                       |                                      |
| Santa Maira, Fig. S15.           |                                      |
| Table S18.                       |                                      |
| Talega, Fig. S16.                |                                      |

# **DATING INFORMATION**


Scientists typically assume that radiocarbon dates with high precision necessarily have high accuracy, but that assumption is frequently incorrect, as demonstrated by Telford et al. (1, 2) for two lakes, one in Germany and the other in the U.S.A. Those authors compared two different age-depth models, one based on radiocarbon dating and the other on high-resolution counting of varves (annual lake sediment layers). They found that even though the radiocarbon dates had measurement precisions of 40 years or less, some ages had inaccuracies of ±400 years, when compared to the more accurate varve dates. Those authors' title, "All age-depth models are wrong: but how badly?" reflects their conclusions.

Radiocarbon limitations. Age models may be incorrect for many reasons, and the most important one is that the past radiocarbon content of Earth's atmosphere has not remained stable, but rather has experienced substantial oscillations. During the latest Quaternary, these oscillations resulted from several large-scale processes, including changes in ocean turnover and the related transfer of <sup>14</sup>C-depleted carbon from deep ocean reservoirs to near-surface ocean waters and into the atmosphere (3). Changes in radiocarbon content also have resulted from fluctuations in cosmic radiation due to solar activity, near-Earth supernovae, and other cosmic phenomena (4) and from fluctuations in Earth's magnetic field (3). The YDB impact event also may have affected atmospheric radiocarbon concentrations through extensive biomass burning that released abundant 14C into the atmosphere and by the influx of extraterrestrial <sup>14</sup>C contained in cometary material (5).

Radiocarbon dating has limitations that make it difficult to date a brief event, such as the YDB impact. Those limitations include the following:

- The age of charcoal or the carbon in a fossil is determined by the degree to which <sup>14</sup>C has decayed (the rate equals ≈0.012% per year or 0.12 per mil). The half-life of <sup>14</sup>C has an uncertainty of ≈±0.7% leading to a systemic error of 90 years at 13,000 Cal B.P.
- Near the time of the YDB event, the stated precision of the IntCal calibration is ≈1% or 10 per mil, which corresponds to a systemic uncertainty of 83 years. That is a minimum value, and all other uncertainties for any Accelerator Mass Spectrometry (AMS) <sup>14</sup>C measurement should be

- compounded with the calibration error and would at least double it.
- Some radiocarbon laboratories round their dates to the nearest 5, 10, or 100 years, meaning that dates can vary by up to ≈0.4% at 13,000 Cal B.P., thus adding more uncertainty to the true age.
- Almost all radiocarbon dates are corrected for fractionation, using the δ¹³C value as a surrogate, which can yield a correction of up to ≈200 years. However, ¹³C/¹²C ratios vary significantly among plants and animals, adding additional uncertainty to corrections for fractionation, if not directly measured.
- There is additional uncertainty in marine radiocarbon dates, which typically are 400 <sup>14</sup>C years or much older than terrestrial dates at 12,800 Cal B.P., but vary by geographic location. This difference means that for a short-duration event, such as the proposed YDB impact, the apparent ages from an ocean sediment record may be much older than dates on nearby terrestrial samples.
- Modern dates from the Southern Hemisphere can be ≈30 <sup>14</sup>C years older than those from the Northern Hemisphere due to incomplete atmospheric mixing. Hence, dates will be different for an identical event in both hemispheres.
- More uncertainty can result when groundwater dissolves limestone, making samples appear up to thousands of years too old, with variations as large as 2000 <sup>14</sup>C years in a single river (6). Secondary carbonate precipitation (hard water effect) in fluvial, lacustrine, and marine deposits can deplete <sup>14</sup>C abundance, resulting in age differences of up to 4,000 <sup>14</sup>C years (7).
- After deposition of a carbon sample, contamination with older or younger organic carbon can produce dating errors of hundreds, if not thousands of years. For example, high terrestrial runoff can transport old charcoal-rich soil into a lake, thus increasing the apparent age of the deposit. This can be especially problematic when dates are acquired from bulk sedimentary carbon (8).
- Another complication can result from the old wood effect. For example, at Arlington Canyon, California, trees lived for up to ≈1300 years, making it more difficult to accurately date any fire in which those old trees burned (9).

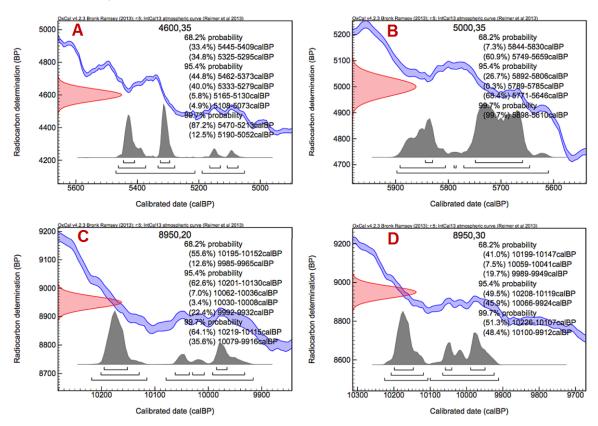


**Fig. S1.** YDB age range. Probability distribution plot (gray) for  $10,900 \pm 145$  <sup>14</sup>C BP using IntCal13. Solid red vertical line represents median age; solid orange vertical line is the mean. Black horizontal bars are probabilities of 68%, 95%, and 99%; red vertical dashed lines represent the 95% range. The y-axis shows that the median and mean years have a very low likelihood of representing the true calibrated radiocarbon date (probability density equals <0.3%).

Radiocarbon calibration is a complex process, with the result that calibration curves are regularly revised because of ever-increasing knowledge. For example, there have been four IntCal calibration curve revisions released over the

fifteen-year span from 1998 to 2013 (10). During that time, the calibrated age for  $10,900 \pm 145$   $^{14}$ C years has changed four times, yielding results that differ from  $12,929 \pm 180$  Cal B.P. in IntCal 98 to  $12,822 \pm 147$  Cal B.P. in IntCal 09, a difference of

107 mean years. In other words, the identical radiocarbon date produced four different age ranges. For this reason, use of the same calibration curve is essential when making comparisons between dates.


The amount of radiocarbon in the atmosphere and oceans has been highly variable over time, producing distinctive "plateaus" (11, 12), as well as significant short-term oscillations. An example of <sup>14</sup>C calibration complications is shown in Fig. S2, where a single radiocarbon date calibrated in OxCal may have three or four separate ages within each probability distribution. Each date is not equally probable, but all are possible, adding considerable uncertainty for determining the most likely age of any discrete event. Undoubtedly, calibration curves will continue to evolve with the result that any current calibrated date in calendar years is an approximation subject to change. Because of calibration issues, individual median dates should not be used without reporting the statistical uncertainties (13). In addition, it is better to model multiple dates with Bayesian analysis, because the results from multiple dates are more robust and accurate than those from a single date.

Optically stimulated luminescence (OSL) dating, another approach, is typically performed on quartz grains and is commonly used where there is a dearth of material for radiocarbon dating, such as at most of the YDB sites in eastern North America (14). OSL dates usually have large systematic errors (>500 years) that can result, for example, from incomplete bleaching due to insufficient exposure to

sunlight and from variable exposure to sedimentary radioactivity. Even though these cumulative issues can produce millennia-scale uncertainties, OSL dating can be invaluable when radiocarbon dating is not possible.

Chronological hygiene. For evaluating a series of <sup>14</sup>C dates, minimizing the above-mentioned dating problems may require use of established techniques of chronological hygiene (15). These approaches include (i) performing Bayesian analysis to exclude outliers (dates that are stratigraphically out of order, meaning they are too old or too young); (ii) favoring younger and higher precision dates as most reliable; (iii) preferring dates from short-lived samples (twigs, seeds, etc.); (iv) investigating the old wood issue by performing taxonomic identification; and (v) using individual pieces of charcoal rather than combining numerous charcoal fragments with different possible ages.

Dating summary. Multiple cumulative problems mean that the accuracy and precision of radiocarbon and OSL dates are limited, with the result that calibrated radiocarbon dates near 12,800 Cal B.P. cannot have the usually claimed precision of a few decades. These limitations do not mean that such dating is unreliable, but rather that high precision and high accuracy should not be assumed. Thus, radiocarbon and OSL dating should not be used in isolation, and instead, they should be integrated with relevant stratigraphic information (lithologic, climatic, paleontological, and archaeological), as can be done using Bayesian analysis (16).



**Fig. S2.** Uncertainties in calibrating radiocarbon dates. *Panels A* and *B* show a single <sup>14</sup>C age that calibrates, not as one date, but as multiple calendar ages. Because the probabilities vary for each date, it is not possible to determine conclusively which one of the multiple calibrated dates is correct. For *panels C* and *D*, the same uncalibrated date (8950 <sup>14</sup>C BP) has uncertainties that change from 20 years (panel C) to 30 years (panel D). The resulting calibrated ages are highly variable, demonstrating that a small difference in uncertainty of only 10 years can have a significant effect. These examples clearly demonstrate the error in using median dates without reporting uncertainties (13).

# Prior information and assumptions in OxCal

Bayesian analysis allows use of prior information and assumptions, and those data can make the age-depth model more robust. For example:

- OxCal assumes that all ages (modeled or real) should be younger with decreasing depth (law of superposition), but, in reality dating reversals are common. When two dates are out of chronologic sequence, OxCal determines which date has the highest probability of fitting the model, and the anomalous date is remodeled younger/older or rejected as an outlier. The result is that final modeled ages are in chronologic order, even if the original dates are not.
- To counter the old wood effect, OxCal uses Outlier coding that assumes most, if not all charcoal dates are older than the fire being dated. Next, a fixed percentage of those dates are considered to be outliers, i.e., they came from either older or younger trees that burned during the same fire
- Similarly, some sites may be subject to a "young wood effect," whereby, younger charcoal moves downward,

- making the stratum appear too young. OxCal's Outlier code can be set to adjust such dates.
- OxCal allows for the insertion of code for what are called "Boundaries." Typically, these designations are used with dates in stratigraphic order to represent, for example, a significant change in sediment characteristics, such as from clay to sand, from thick to thin strata, and/or from coarse to fine sediment. Based on changes in palynology, a boundary also may represent climate change, e.g., the onset of the Younger Dryas episode.
- OxCal allows for the designation of groups called "Phases," based on common distinguishing characteristics. Typically, Phases include dates in chronological order with no depth information. For example, a group of dates from multiple archaeological sites may contain several phases, each of which relates to a specific style of pottery. A phase also may be identified based on the presence or absence of extinct megafaunal remains or a specific style of projectile point, e.g., Clovis or Folsom.

#### SITE INFORMATION

**Table S1.** Site details: name, location, latitude-longitude, list of proxies that peak in the YDB layer at each site, and main references. "CS" represents carbon spherules; "GLC" = glass-like carbon; "PAHs" = polycyclic aromatic hydrocarbons.

|                      |         |                            |    |    | ,   | / , | / , | / , | / , | / , | / , | / , | / , | / , | / , | / , | //     |
|----------------------|---------|----------------------------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
|                      |         |                            |    |    |     |     |     |     |     |     |     |     |     |     |     |     | //     |
|                      |         | ′ /                        |    | /  | / / | / / | / / | / / | / / | / / | / / | / / | / / | / / | / / | / / | / /    |
|                      |         |                            |    |    |     |     |     |     |     |     |     |     |     |     |     |     | //     |
|                      |         |                            | /  |    |     |     |     |     |     |     |     |     |     |     |     |     |        |
|                      |         |                            | _  | _  | _   | _   | _   | _   | _   |     | _   | _   | _   | _   | _   | _   |        |
| Abu Hureyra          | SYR     | 35.8667000°N, 38.400000°E  | •  | •  | •   | •   | -   | -   | •   | •   | •   | -   | -   | -   | •   | -   | 17     |
| Arlington Cyn        | CA, US  | 33.988587°N, 120.158047°W  | -  | •  | -   | •   | •   | •   | -   | •   | •   | •   | -   | -   | -   | -   | 9      |
| Aalsterhut           | NED     | ≈51.427254°N, ≈5.585360°E  | •  | -  | -   | -   | •   | •   | •   | •   | •   | -   | -   | -   | -   | -   | 18     |
| Big Eddy             | MO, US  | 37.736470°N, 93.786128°W   | •  | •  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | 19     |
| Bull Creek           | OK, US  | ≈36.64000°N, ≈100.85000°W  | •  | -  | -   | •   | -   | -   | -   | -   | -   | •   | -   | -   | -   | -   | 9      |
| Daisy Cave           | CA, US  | 34.042070°N, 120.320090°W  | •  | •  | -   | -   | -   | -   | •   | •   | •   | -   | •   | •   | -   | -   | 20     |
| Lake Hind            | CAN     | 49.440000°N, 100.697700°W  | •  | -  | -   | •   | -   | •   | •   | •   | •   | -   | -   | -   | •   | •   | 4      |
| Lingen               | GER     | 52.5087510°N, 7.3138820°E  | -  | •  | -   | -   | •   | •   | •   | •   | •   | -   | -   | -   | -   | -   | 19     |
| Sheriden Cave        | OH, US  | 40.965055°N, 83.426038°W   | •  | •  | -   | -   | •   | •   | -   | •   | •   | -   | -   | -   | -   | -   | 21-29  |
| Barber Creek         | NC, US  | 35.6000592°N, 77.303636°W  | •  | •  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | 19     |
| Blackwater Draw      | NM, US  | 34.275687°N, 103.326101°W  | •  | •  | -   | -   | -   | -   | •   | •   | •   | -   | •   | •   | •   | •   | 19     |
| Indian Creek         | MT, US  | 46.314439°N, 111.630274°W  | •  | -  | -   | -   | -   | •   | -   | -   | •   | -   | -   | -   | -   | -   | 20     |
| Lindenmeier          | CO, US  | 40.976424°N, 105.104108°W  | •  | -  | -   | •   | -   | -   | -   | -   | •   | -   | -   | -   | -   | -   | 20     |
| Murray Spgs          | AZ, US  | 31.570912°N, 110.177996°W  | •  | •  | •   | •   | -   | -   | •   | •   | •   | •   | •   | •   | •   | •   | 4      |
| Santa Maira          | SPN     | 38.7302850°N, 0.2150870°W  | •  | -  | -   | -   | •   | •   | •   | •   | •   | -   | -   | -   | -   | -   | 20     |
| Talega               | CA, US  | 33.470292°N, 117.600471°W  | •  | •  | -   | -   | -   | -   | -   | -   | •   | -   | -   | -   | -   | -   | 19     |
| Topper               | SC, US  | 33.005763°N, 81.489266°W   | •  | •  | -   | -   | •   | •   | •   | -   | -   | -   | -   | -   | •   | •   | 19     |
| Blackville           | SC, US  | 33.361545°N, 81.304348°W   | -  | •  | •   | -   | •   | •   | •   | •   | -   | •   | -   | -   | •   | •   | 17     |
| Lake Cuitzeo         | MEX     | 19.936516°N, 101.155676°W  | •  | •  | -   | •   | -   | •   | -   | •   | •   | -   | -   | -   | -   | -   | 37     |
| Lommel               | BEL     | 51.2362310°N, 5.2546860°E  | •  | •  | -   | -   | •   | •   | •   | •   | •   | -   | -   | -   | -   | •   | 19     |
| Melrose              | PA, US  | 41.925410°N, 75.510436°W   | -  | •  | •   | •   | -   | •   | •   | •   | •   | •   | -   | -   | -   | •   | 17     |
| Mucunuque (MUM7b)    | VEN     | 8.7757910°N, 70.8181220°W  | •  | •  | •   | -   | -   | •   | -   | -   | •   | -   | -   | -   | -   | -   | 30-36  |
| Ommen                | NED     | 52.5269500°N, 6.3635170°E  | -  | •  | -   | -   | •   | •   | •   | •   | •   | -   | -   | -   | -   | -   | 19     |
| NOT USED FOR AGE M.C | DELS    |                            | -  | -  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |        |
| Chobot               | CAN     | 52.956004°N, 114.734872°W  | -  | •  | -   | •   | •   | •   | •   | •   | •   | -   | -   | -   | -   | -   | 19     |
| Gainey               | MI, US  | 42.885973°N, 83.614324°W   | •  | •  | -   | -   | -   | •   | •   | •   | •   | -   | -   | -   | •   | -   | 19     |
| Kangerlussuaq        | GRN     | 67.156400°N, 50.023300°W   | -  | •  | -   | •   | -   | •   | -   | -   | -   | -   | -   | -   | -   | -   | 38     |
| Kimbel Bay           | NC, US  | 34.981811°N, 78.776820°W   | -  | •  | -   | -   | -   | •   | -   | -   | -   | -   | -   | -   | -   | -   | 19     |
| Morley               | CAN     | 51.145737°N, 114.866317°W  | -  | •  | -   | -   | -   | -   | •   | •   | •   | -   | -   | -   | •   | -   | 4      |
| Mt.Viso              | FRA/ITA | ≈44.698750°N, ≈7.0345750°E | -  | •  | -   | -   | -   | •   | •   | -   | -   | -   | -   | -   | •   | -   | 36, 39 |
| Newtonville          | NJ, US  | 39.569579°N, 74.910859°W   | •  | •  | •   | •   | -   | -   | -   | •   | •   | -   | -   | -   | -   | •   | 40     |
| Paw Paw Cove         | MD, US  | 38.697466°N, 76.342255°W   | •  | •  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | 40     |
| Watcombe Bottom      | UK      | 50.593900°N, 1.230800°W    | •  | •  | -   | -   | •   | •   | -   | •   | •   | -   | -   | -   | -   | -   | 20     |
| TOTALS               |         |                            | 23 | 27 | 6   | 11  | 11  | 20  | 17  | 20  | 23  | 5   | 3   | 3   | 10  | 9   |        |

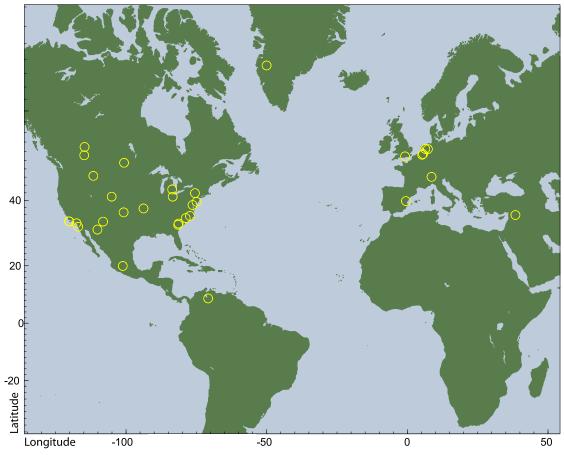



Fig. S3. Locations for 32 YDB sites on four continents. For latitude and longitude, see Table S1.

Table S2. YDB studies by proponents, independent workers, and critics. Each proxy shows references by number.

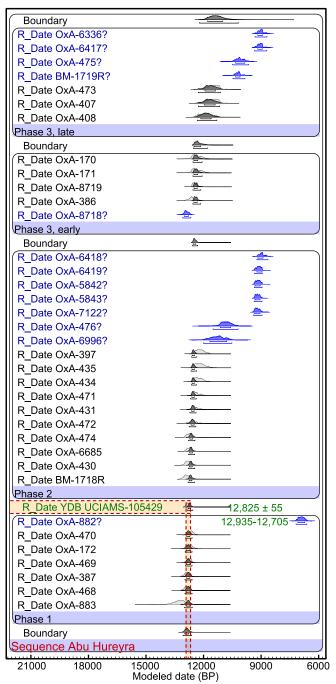
| PROXY                                                                                           | PROPONENTS                    | INDEPENDENT WORKERS              | CRITICS            |
|-------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|--------------------|
| Cosmic impact spherules                                                                         | 4, 9, 19, 37, 41, 42          | 21-29, 30-36, 39, 40, 46, 47, 56 | 58, 59, 60, 61     |
| Meltglass                                                                                       | 17, 19                        | 30-36, 47, 56                    |                    |
| Carbon sperules, glass-like                                                                     |                               |                                  |                    |
| carbon, aciniform carbon,                                                                       | 4, 9, 37, 41, 42              | 21-29, 30-36, 48                 | 18, 59, 61, 62, 63 |
| PAHs, fullerenes                                                                                |                               |                                  |                    |
| Nanodiamonds                                                                                    | 4, 20, 37, 38, 41, 42, 44, 45 | 21-29, 48, 49, 50                | 18, 59, 61, 63, 64 |
| Iridium                                                                                         | 4, 41, 42                     | 46, 51, 52                       | 59, 60, 61, 65     |
| Platinum                                                                                        |                               | 53                               |                    |
| Osmium                                                                                          |                               | 51, 54, 55, 56                   | 65                 |
| Nickel, cobalt, chromium,<br>thorium, <sup>14</sup> C, <sup>10</sup> Be, <sup>26</sup> Al, REEs | 4, 17, 19, 41, 42, 43         | 5, 51, 57                        |                    |

# FIGURES AND TABLES for YDB sites

Most sites were chosen for YDB investigation because independent chronostratigraphic investigations already existed. Occasionally, we added one or more <sup>14</sup>C dates for a site. In some cases, the original workers rejected dates for various reasons, but for completeness, we have modeled all available dates.

For all images of age models below, horizontal red dashed lines indicate the upper and lower boundaries of the YDB sample. Vertical red dashed lines denote the previously published YDB age range at 68% (12,950 to 12,650 Cal B.P.). Laboratory numbers matching the accompanying tables are listed along the left side of each image, where those falling within the YDB interval are shown in green. Dates in blue were

rejected by OxCal as outliers, i.e., either too old or too young for the model. Unmodeled probability distribution curves are in light gray, and OxCal's modeled and calibrated probability distributions are in dark gray. When present for age-depth models, the lighter blue curve represents the full-depth probability of the age-depth model at 95% and the darker blue represents 68%. Boxed areas that include the blue horizontal bar represent separate Phases, and the probability distributions between them represent the likely ages of transition. Earlier workers identified the stratigraphic intervals for most sites (see source papers in **Table S2**). All phases are in stratigraphic order with dates in chronological order within each phase. Notations are the same for all similar figures below. OxCal's coding for each site is in **SI Appendix—Code**.


# **HIGH-QUALITY CHRONOLOGIES**

# Abu Hureyra, Syria

Except for the age model and data table below, the following information was extracted from Bunch et al. (17) and Wittke et al. (19). See main manuscript and Tables S1-S2 for other site information. This is an excavated archaeological site ("tell") located on a terrace near the Euphrates River on welldeveloped, limey, silty, unconsolidated sand, atop massive limestone deposits (66). Several 12,800-year-old pit-houses at Abu Hureyra and their immediate environs were associated with a dark, 3-cm-thick, charcoal-rich layer (centered at 420 cmbs (centimeters below surface) or 284.6 masl (meters above sea level), indicating a major burning episode. The original excavators previously attributed this layer to residue from cooking fires (66), but now attribute it to biomass burning at the time of the YDB impact event (17). The proxy-rich YDB layer contained abundance peaks in charcoal, nanodiamonds, carbon spherules, impact-related spherules (595/kg) and melt-glass (15.8 g/kg; the highest of any YDB site investigated) (17, 19, 20, 67).

The palynological and macrobotanical record

demonstrates that the YDB layer coincides with major climatic change, interpreted to represent the onset of the Younger Dryas episode (66, 68). At that time, the regional environment of Abu Hureyra abruptly changed from moist woodlandsteppes to arid, mostly treeless steppes. This change is reflected in the sudden decline in abundance of charred seed remains of several major food groups. First, there was a decline by ≈50% in seeds of food plants, such as wild pears and cherries, found in an oak-dominated park-woodland that disappeared from the Abu Hureyra area at the Younger Dryas onset. Second, there was a decline of ≈70% in seeds of some legumes. Third, there was a decline of ≈60% in grains of wild ryes and wheat (68). Altogether, changes in more than 150 species of plants reflect the major effects of this abrupt climatic change from warmer, moister conditions, equivalent to the Allerød oscillation in Europe, to cooler, dryer conditions at the onset of the Younger Dryas at ≈12,800 years ago. This climatic change coincides with deposition of impact-related proxies in the YDB layer at Abu Hureyra.



**Fig. S4.** Abu Hureyra age-sequence model. For this and chronological figures below, the vertical dashed lines represent the previously published YDB range of 12,950 to 12,650 Cal B.P. (19, 20). Horizontal red dashed lines represent the bounds of the proxy-rich sample. Laboratory numbers of dates are along the left side with dates falling within the YDB interval shown in green text. "R\_Date" represents <sup>14</sup>C dates and "C\_Date," when present, represents OSL, varve, and ice layer dates. OxCal's individual unmodeled probability distribution curves are shown in light gray, and modeled probability distributions in dark gray. This figure and all similar models have multiple boxed areas that represent separate chronostratigraphic Phases or Sequences, where the probability distributions of the boundaries between phases represent the likely ages of the transition. These phases mainly were identified by earlier site investigators, using prior, temporally diagnostic information, including stratigraphy, archaeology, palynology, and/or climatology. All Phases are in stratigraphic order, and dates within each Phase typically are in chronological order. Notations are the same for all similar figures below.

**Table S3.** Abu Hureyra: modeled and unmodeled Bayesian ages for this site, as for all tables below. The first few columns list laboratory numbers, uncalibrated  $^{14}$ C dates (with OSL dates, when used), labeled as " $\mu$ ," statistical uncertainties (errors), labeled as " $\mu$ ," with depths, where available. The term "R\_Date" refers to  $^{14}$ C dates, and "C\_Date" refers to OSL, varve, or ice layer dates. The next group of columns shows unmodeled calibrated ages at 95% and 68% CI, followed by a group of columns for modeled calibrated ages. Agreement indices are shown for individual dates, with A<sub>model</sub> and A<sub>overall</sub> percentages, where

≥60% agreement is equivalent to ≥95% CI. Last, the type of material dated is listed, when available. The modeled YDB age is highlighted in green. Dates rejected by OxCal are in blue. Rarely, dates in red at the bottom of the table were excluded for the reasons stated.

For Abu Hureyra, all dates are from Moore et al. (66). Wittke et al. (19) listed these dates in approximate stratigraphic order within the  $7\times7$ -meter trench. However, some of the dates used in the model are from sediment separated by up to  $\approx10$  m within the trench, and so, their exact stratigraphic relationships are not always clear. For greater clarity in this contribution, we placed the dates in chronological order within each Phase. In spite of the relationship between other dates, the proxy-rich YDB layer is accurately dated to  $12,825 \pm 55$ , because a radiocarbon date (UCIAMS-105429) was acquired from charcoal taken directly from that layer. This is the same age as reported in Kinzie et al. (20) and overlaps the date of  $12,815 \pm 160$  (OxA-172; IntCal09) originally presented by Wittke et al. (19) for an adjacent sample.

|                      |       |     |          |          |       |     | Modelle  | d (BP) |       |     | Amod  | el=83.7                    |
|----------------------|-------|-----|----------|----------|-------|-----|----------|--------|-------|-----|-------|----------------------------|
| Laboratory #         | μ     | σ   | 95.4% ra | ange     | μ     | σ   | 95.4% ra | ange   | μ     | σ   | Aover | all=81.4                   |
| Boundary             |       |     |          | <u> </u> |       |     |          | 10355  |       | 520 |       |                            |
| R Date OxA-6336      | 8140  | 90  | 9405     | 8770     | 9095  | 145 | 9405     | 8770   | 9095  | 150 | 0.6   | Grain (domestic einkorn)   |
| R Date OxA-6417      | 8170  | 90  | 9430     | 8785     | 9140  | 135 | 9430     | 8785   | 9140  | 135 | 0.7   | Grain (domestic w heat)    |
| R Date OxA-475       | 9060  | 140 | 10570    | 9740     | 10185 | 215 | 10570    | 9740   | 10185 | 215 | 3.4   | Charred gazelle bone       |
| R Date BM-1719R      | 9100  | 100 | 10555    | 9925     | 10280 | 140 | 10555    | 9925   | 10280 | 140 | 3.8   | Charcoal                   |
| R Date OxA-473       | 10000 | 170 | 12370    | 11090    | 11585 | 285 | 12375    | 11225  | 11750 | 275 | 87.1  | Charred sheep bone         |
| R Date OxA-407       | 10050 | 180 | 12385    | 11175    | 11660 | 305 | 12370    | 11260  | 11790 | 275 | 93.7  | Charred wild sheep bone    |
| R Date OxA-408       | 10250 | 160 | 12535    | 11355    | 11965 | 305 | 12415    | 11410  | 11950 | 260 | 108.6 | Humic fraction of OxA-407  |
| Phase 3, late        |       |     |          |          |       |     |          |        |       |     |       |                            |
| Boundary             |       |     |          |          |       |     | 12635    | 11915  | 12345 | 200 |       |                            |
| R Date OxA-170       | 10600 | 200 | 12890    | 11815    | 12415 | 265 | 12655    | 12190  | 12465 | 125 | 128.4 | Grain (w ild einkorn)      |
| R Date OxA-171       | 10600 | 200 | 12890    | 11815    | 12415 | 265 | 12655    | 12190  | 12465 | 125 | 128.4 | Grain (w ild einkorn)      |
| R Date OxA-8719      | 10610 | 100 | 12730    | 12170    | 12535 | 130 | 12655    | 12250  | 12490 | 95  | 101.1 | Grain (domestic rye)       |
| R_Date OxA-386       | 10800 | 160 | 13075    | 12385    | 12710 | 175 | 12660    | 12250  | 12495 | 100 | 66.8  | Grain (w ild einkorn)      |
| R Date OxA-8718      | 11140 | 100 |          | 12750    |       | 110 |          | 12750  |       | 110 |       | Grain (domestic rye)       |
| Phase 3, early       |       |     |          |          |       |     |          |        |       |     |       |                            |
| Boundary             |       |     |          |          |       |     | 12675    | 12430  | 12560 | 65  |       |                            |
| R Date OxA-6418      | 8115  | 80  | 9300     | 8725     | 9050  | 140 |          | 8725   | 9050  | 140 |       | Grain ((domestic barley)   |
| R Date OxA-6419      | 8230  | 80  | 9420     | 9015     | 9210  | 115 |          | 9015   | 9210  | _   |       | Grain (domestic emmer)     |
| R Date OxA-5842      | 8260  | 75  | 9435     | 9030     | 9245  |     |          | 9030   | 9245  | _   |       | Grain (splt/br.w heat      |
| R Date OxA-5843      | 8275  | 65  | 9445     | 9030     | 9265  | 105 |          | 9030   | 9265  | _   |       | Grain (domestic rye)       |
| R Date OxA-7122      | 8290  | 75  | 9470     | 9030     | 9275  | 110 | 9470     | 9030   | 9275  |     |       | Grain (domestic einkorn)   |
| R Date OxA-476       | 9600  | 200 | 11600    | 10280    | 10925 | 285 | 11595    | 10275  | 10925 | 285 |       | Fulvic fraction of OxA-434 |
| R Date OxA-6996      | 9860  | 220 | 12095    |          | 11370 | 375 | 12100    |        | 11370 | 375 | 0.1   | Grain (domestic rye)       |
| R Date OxA-397       | 10420 | 140 |          | 11810    | 12260 |     |          | 12485  |       | 60  | 48.4  | Grain (w ild einkorn)      |
| R Date OxA-435       | 10450 | 180 | 12720    | 11650    | 12255 | 275 | 12750    | 12480  | 12630 | 65  | 72.9  | Humic fraction of OxA-434  |
| R Date OxA-434       | 10490 | 150 | 12715    | 11835    | 12335 | 220 | 12735    | 12485  | 12625 | 65  | 79.8  | Charred gazelle bone       |
| R Date OxA-471       | 10620 | 150 | 12770    | 12060    | 12485 | 190 | 12780    | 12500  | 12645 | 65  | 122.6 | Humic, repeat of OxA-407   |
| R Date OxA-431       | 10680 | 150 | 12850    | 12100    | 12555 | 180 | 12805    | 12510  | 12660 | 70  | 128.1 | Humic fraction of OxA-430  |
| R Date OxA-472       | 10750 | 170 | 13035    | 12155    | 12635 | 200 | 12840    | 12525  | 12680 | 75  | 135.4 | Humic fraction of OxA-473  |
| R Date OxA-474       | 10930 | 150 | 13095    | 12600    | 12850 | 130 | 12875    | 12580  | 12735 | 70  |       | Humic fraction, sheep bone |
| R Date OxA-6685      | 10930 | 120 | 13065    | 12675    | 12845 | 105 | 12880    | 12600  | 12745 | 65  | 113.6 | Grain (domestic rye)       |
| R Date OxA-430       | 11020 | 150 | 13155    | 12685    | 12905 | 125 | 12890    | 12600  | 12750 | 70  | 97.5  | Charred gazelle bone       |
| R Date BM-1718R      | 11140 | 140 | 13250    | 12730    | 12990 | 135 | 12900    | 12615  | 12765 | 70  | 73.2  | Charcoal                   |
| Phase 2              |       |     |          |          |       |     |          |        |       |     |       |                            |
| R_Date UCIAMS-105429 | 11070 | 40  | 13060    | 12805    | 12935 | 70  | 12935    | 12705  | 12825 | 55  | 80.7  | Charcoal                   |
| R_Date OxA-882       | 6100  | 120 | 7260     | 6675     | 6980  | 150 | 7260     | 6680   | 6980  | 150 |       | Grain (w ild einkorn)      |
| R_Date OxA-470       | 10820 | 160 | 13070    | 12415    | 12735 | 170 | 13030    | 12730  | 12885 | 75  | 79.8  | Humic fraction of OxA-468  |
| R_Date OxA-172       | 10900 | 200 | 13205    | 12400    | 12810 | 195 | 13045    | 12730  | 12890 | 80  | 116.9 | Grain (w ild einkorn)      |
| R_Date OxA-469       | 10920 | 140 | 13085    | 12620    | 12840 | 120 | 13035    | 12735  | 12890 | 75  | 100.9 | Humic fraction of OxA-468  |
| R_Date OxA-387       | 11070 | 160 | 13225    | 12695    | 12940 | 140 | 13055    | 12735  | 12895 | 80  | 117.7 | Charred Bos bone           |
| R_Date OxA-468       | 11090 | 150 | 13215    | 12705    | 12950 | 135 | 13060    | 12735  | 12895 | 80  | 116.2 | Bos bone, repeat OxA-387   |
| R_Date OxA-883       | 11450 | 300 | 13935    | 12720    | 13315 | 305 | 13080    | 12730  | 12905 | 85  | 65    | Grain (w ild einkorn)      |
| Phase 1              |       |     |          |          |       |     |          |        |       |     |       |                            |
| Boundary             |       |     |          |          |       |     | 13155    | 12765  | 12970 | 95  |       |                            |
| Sequence Abu Hureyra | 3     |     |          |          |       |     |          |        |       |     |       |                            |

# **Arlington Canyon, California**

Except for the age model and data table below, the following information was extracted from a detailed description in Kennett et al. (9) and Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. At this site, the sampled section is exposed in a stream cut on the northwest part of Santa Rosa Island, California. At the base of the section, extending below creek

level, a 44-cm-thick, organic-rich, dark blue-gray, silty mud layer rests directly on a gravel deposit at 5.03 meters below surface (mbs). This layer is capped by a coarse, cobble-rich deposit (≈60 cm thick) and in turn by a second less dark layer (20 cm thick) of gray to black laminated sandy silt. Alluvial sands and gravels represent the remainder of the overlying sequence. Ten nearly continuous samples, varying from 2 to 6 cm thick, were from the 44-cm lower dark layer between 459

and 503 cm below surface (cmbs). Four more samples were from the upper dark layer, spanning a total of 111 cm (9). This entire section contained impact-related proxies (magnetic spherules, carbon spherules, elongated spherules, nanodiamonds, charcoal, and aciniform carbon), although the lower section contained most of the peaks. Therefore, the bottom probably best represents the YDB layer, even though the ages of the upper and lower sections are nearly indistinguishable. This similarity in age of all parts of this section supports rapid deposition over a short time span (9).

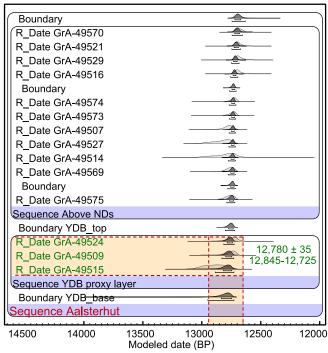
The YDB layer at Arlington Canyon is coeval with the Younger Dryas onset in the Santa Barbara Basin and corresponds to a major transition from conifer-dominated forests to modern chaparral-oak woodlands on the island (9). The pollen record indicates the island was partly forested by several species of long-lived conifers, including Douglas fir (Pseudotsuga menziesii, max lifespan: >1,300 years), Torrey pine (Pinus torreyana, max: >450 years), and Monterey cypress (Cupressus macrocarpa, max: >250 years) (9, 20). Radiocarbon dating of wood for Arlington Canyon is subject to a significant old wood effect from these long-lived trees and was accounted for in the age-depth model of this paper, as was done by Kennett et al. (9), but not by van Hoesel et al.

(18) or Meltzer et al. (13). We investigated the old wood effect using the Charcoal Outlier coding in OxCal, which accepted all 12 dates from the proxy-rich YDB section as being part of the same model. This means that all carbon material could have been produced during one YDB wildfire episode or some could have been redeposited over a short interval.

In addition, the YDB correlates with the extinction of the island's pygmy mammoths, which, in turn, is closely coincident with megafaunal extinctions on the continent. The YDB also marks the likely abandonment of the island by humans for ≈800 years (9), corresponding to a proposed human population decline across the Northern Hemisphere.

Meltzer et al. (pg. 7 of (13)) stated that for the YDB layer, "it is also reasonable to expect that the layers above and below it should not be the same age. If they are, then they should have impact indicators as well." In reaching that conclusion, those authors overlooked the conclusions of Kennett et al. (9, 45) that the proxy-rich layer at Arlington Canyon was deposited within a few decades or less, so that YDB impact proxies were reworked and distributed throughout a 111-cm profile. A span of a few decades cannot be accurately dated using radiocarbon dates with uncertainties of a few decades, although Bayesian analyses can assist.

**Table S4.** Arlington Canyon, California. Dates are from Kennett et al. (9). No <sup>14</sup>C dates are available from below the rapidly accumulated YDB layer because the water table was encountered at that depth. The ages highlighted in yellow were used to define the YDB layer, and then used as Priors to determine the age of the YDB layer, as noted in **SI—Methods**, below, and in **SI—Code**. Age-depth plot is **Fig. 1** in the main manuscript. Median depths are shown for samples; details in Kennett et al. (9).


|                        |                         |    | Depth | UNM OF  | DELED ( | Modelle | ed (BP) |          |       | Amod  | el=66.2 |       |                 |
|------------------------|-------------------------|----|-------|---------|---------|---------|---------|----------|-------|-------|---------|-------|-----------------|
| Laboratory #           | μ                       | σ  | (cm)  | 95.4% r | ange    | μ       | σ       | 95.4% ra | ange  | μ     | σ       | Aover | all=65.4        |
| Boundary               |                         |    |       |         |         |         |         | 12815    | 12330 | 12630 | 120     |       |                 |
| R_Date UCIAMS-47235    | 11040                   | 30 | 97.0  | 13020   | 12790   | 12905   | 60      | 12820    | 12440 | 12665 | 95      | 99.5  | Charcoal        |
| R_Date UCIAMS-47236    | 12095                   | 40 | 181.0 | 14100   | 13785   | 13945   | 80      | 12820    | 12515 | 12690 | 75      | 97.4  | Charcoal        |
| R_Date UCIAMS-47237    | 10895                   | 35 | 216.0 | 12815   | 12700   | 12755   | 30      | 12825    | 12570 | 12715 | 60      | 86    | Charcoal        |
| R_Date UCIAMS-47238    | 11105                   | 30 | 268.5 | 13080   | 12850   | 12985   | 60      | 12870    | 12615 | 12745 | 60      | 91.8  | Charcoal        |
| Sequence Upper layer   |                         |    |       |         |         |         |         |          |       |       |         |       |                 |
| Boundary YDB_top       |                         |    |       |         |         |         |         | 12905    | 12645 | 12770 | 65      |       |                 |
| R_Date UCIAMS-47239    | 11105                   | 30 | 394.0 | 13080   | 12850   | 12985   | 60      | 12910    | 12655 | 12775 | 60      | 93.5  | Charcoal        |
| R_Date UCIAMS-36308    | 11095                   | 25 | 466.5 | 13070   | 12840   | 12975   | 60      | 12910    | 12660 | 12780 | 60      | 95.2  | Wood            |
| R_Date UCIAMS-42816    | 11095                   | 25 | 404.5 | 13070   | 12840   | 12975   | 60      | 12915    | 12670 | 12785 | 60      | 95.5  | Wood            |
| R_Date UCIAMS-36307    | 11070                   | 25 | 472.0 | 13045   | 12815   | 12935   | 60      | 12915    | 12675 | 12790 | 60      | 101.5 | Wood            |
| R_Date UCIAMS-36961    | 11440                   | 90 | 482.5 | 13450   | 13105   | 13280   | 90      | 12920    | 12680 | 12795 | 60      | 97.1  | Carbon elongate |
| R_Date UCIAMS-36960    | 11185                   | 30 | 482.5 | 13115   | 13000   | 13060   | 30      | 12925    | 12685 | 12800 | 60      | 98.1  | Carbon spherule |
| R_Date UCIAMS-36962    | 11110                   | 35 | 482.5 | 13080   | 12840   | 12985   | 60      | 12925    | 12690 | 12805 | 60      | 95.9  | Wood            |
| R_Date UCIAMS-36959    | 11075                   | 30 | 482.5 | 13055   | 12820   | 12940   | 65      | 12930    | 12695 | 12810 | 60      | 103.2 | Glassy carbon   |
| R_Date BETA-161032     | 10860                   | 70 | 482.5 | 12915   | 12660   | 12760   | 60      | 12940    | 12695 | 12815 | 65      | 29.6  | Charcoal        |
| R_Date UCIAMS-36306    | 11375                   | 25 | 488.0 | 13290   | 13135   | 13215   | 40      | 12945    | 12695 | 12820 | 65      | 97.5  | Wood            |
| R_Date UCIAMS-36305    | 11235                   | 25 | 495.5 | 13145   | 13050   | 13095   | 25      | 12955    | 12700 | 12825 | 65      | 100.2 | Wood            |
| R_Date UCIAMS-36304    | 11020                   | 25 | 500.5 | 13000   | 12780   | 12880   | 60      | 12960    | 12700 | 12830 | 70      | 96.4  | Wood            |
| Sequence YDB_layer     |                         |    |       |         |         |         |         |          |       |       |         |       |                 |
| Boundary YDB_base      |                         |    |       |         |         |         |         | 12975    | 12700 | 12835 | 70      |       |                 |
| Sequence Arlington Can | quence Arlington Canyon |    |       |         |         |         |         |          |       |       |         |       |                 |
|                        |                         |    |       |         |         |         |         |          |       |       |         |       |                 |
| YDB age from Priors    |                         |    |       |         |         |         |         |          |       |       |         |       |                 |
| Arlington_YDB_layer    |                         |    |       |         |         |         |         | 12925    | 12695 | 12805 | 55      |       |                 |

# Aalsterhut, Netherlands

Except for the age model and data table below, the following information was extracted with minor modifications from van Hoesel et al. (18, 63), who sampled the site for impact proxies. See main manuscript **Table 1** and **Tables S1-S2** for other site information. The Late Glacial-Holocene stratigraphy at Geldrop-Aalsterhut is similar to that of Lingen, Lommel, and Ommen. Eolian deposits, called Younger Coversands I, formed during the Older Dryas cold stadial, and later, during the Allerød climate oscillation, the Usselo layer formed above them. Now visible as a bleached sand layer, the

Usselo layer generally contains abundant charcoal particles at its upper boundary, indicating the position of the YDB layer. The stratum overlying the YDB and the Usselo, the Younger Coversands II, formed during the Younger Dryas due to increased eolian activity as vegetation cover diminished during the colder climate.

The age-sequence model in **Fig. S5** below is based on the reported stratigraphic profile (18), where a nanodiamond-rich layer is the base. Only the three dates from the proxy-rich layer were used in the age model.



**Fig. S5.** Aalsterhut age-sequence model. Three dates are on charcoal from directly within the proxy-rich layer, containing nanodiamonds. Eleven dates come from above that layer. The YDB age is a weighted average of the bottom three modeled dates.

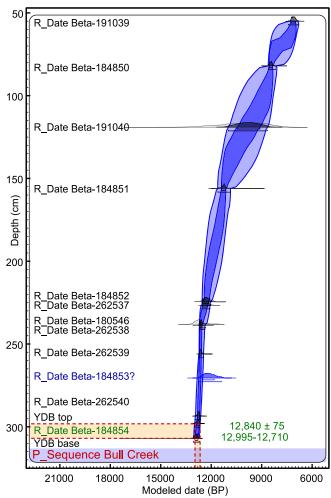
**Table S5.** Aalsterhut, Netherlands. Dates from van Hoesel et al. (18). The ages of the two boundaries highlighted in yellow were used to calculate the age of the YDB layer, highlighted in green.

|                        |       |     | depth | lepth UNMODELED |          |       |     |          | ed (BP) |       |    | Amode | el=160.9  |
|------------------------|-------|-----|-------|-----------------|----------|-------|-----|----------|---------|-------|----|-------|-----------|
| Laboratory#            | μ     | σ   | (cm)  | 95.4% r         |          | μ     | σ   | 95.4% ra | , ,     | μ     | σ  |       | all=160.1 |
| Boundary               |       |     | (- /  |                 | <u> </u> |       |     | 12745    | 12630   |       | 25 |       |           |
| R_Date GrA-49570       | 10735 | 45  | -4.50 | 12740           | 12595    | 12680 | 35  | 12745    | 12655   | 12700 | 20 | 119.9 | charcoal  |
| R_Date GrA-49521       | 10765 | 50  | -4.50 | 12750           | 12625    | 12690 | 30  | 12750    | 12670   | 12710 | 15 | 126.7 | charcoal  |
| R_Date GrA-49529       | 10755 | 55  | 1.00  | 12745           | 12590    | 12685 | 35  | 12750    | 12680   | 12715 | 15 | 122.9 | charcoal  |
| R_Date GrA-49516       | 10765 | 50  | 1.00  | 12750           | 12625    | 12690 | 30  | 12755    | 12695   | 12725 | 15 | 109.2 | charcoal  |
| Boundary               |       |     |       |                 |          |       |     | 12765    | 12705   | 12735 | 15 |       |           |
| R_Date GrA-49574       | 10845 | 45  | 1.00  | 12800           | 12685    | 12735 | 30  | 12770    | 12710   | 12735 | 15 | 131.3 | charcoal  |
| R_Date GrA-49573       | 10860 | 45  | 1.00  | 12810           | 12690    | 12740 | 30  | 12770    | 12710   | 12740 | 15 | 133.9 | charcoal  |
| R_Date GrA-49507       | 10920 | 50  | 1.00  | 12915           | 12700    | 12785 | 55  | 12770    | 12710   | 12740 | 15 | 99.7  | charcoal  |
| R_Date GrA-49527       | 10960 | 60  | 1.00  | 12990           | 12715    | 12835 | 75  | 12775    | 12715   | 12740 | 15 | 83.5  | charcoal  |
| R_Date GrA-49514       | 10880 | 110 | 3.00  | 13035           | 12635    | 12805 | 100 | 12775    | 12715   | 12740 | 15 | 153.4 | charcoal  |
| R_Date GrA-49569       | 10895 | 45  | 3.00  | 12840           | 12695    | 12765 | 40  | 12780    | 12715   | 12745 | 15 | 120   | charcoal  |
| Boundary               |       |     |       |                 |          |       |     | 12780    | 12715   | 12745 | 15 |       |           |
| R_Date GrA-49575       | 10900 | 50  | 3.25  | 12875           | 12690    | 12770 | 45  | 12790    | 12715   | 12750 | 20 | 126   | charcoal  |
| Sequence Above NDs     |       |     |       |                 |          |       |     |          |         |       |    |       |           |
| Boundary YDB_top       |       |     |       |                 |          |       |     | 12805    | 12720   | 12760 | 20 |       |           |
| R_Date GrA-49524       | 10840 | 75  | 4.75  | 12910           | 12635    | 12750 | 60  | 12815    | 12725   | 12765 | 20 | 110   | charcoal  |
| R_Date GrA-49509       | 10865 | 55  | 4.75  | 12835           | 12680    | 12750 | 40  | 12830    | 12725   | 12775 | 25 | 93.6  | charcoal  |
| R_Date GrA-49515       | 11020 | 75  | 4.75  | 13050           | 12730    | 12890 | 85  | 12890    | 12725   | 12795 | 45 | 86.7  | charcoal  |
| Sequence ND-rich layer |       |     |       |                 |          |       |     |          |         |       |    |       |           |
| Boundary YDB_base      |       |     |       |                 |          |       |     | 12950    | 12725   | 12815 | 70 |       |           |
| Sequence Aalsterhut    |       |     |       |                 |          |       |     |          |         |       |    |       |           |
|                        |       |     | ·     |                 |          |       |     |          |         |       |    |       |           |
| YDB age from Priors    |       |     |       |                 |          |       |     |          |         |       |    |       |           |
| Aalsterhut_YDB_layer   |       |     |       |                 |          |       |     | 12845    | 12725   | 12780 | 35 |       |           |

# Big Eddy, Missouri

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site

information. This site lies in the floodplain of the Sac River in southwestern Missouri. At the site, frequent slackwater, overbank flooding produced a thick stratigraphic profile


dominated by alluvial, fine-grained, silty clay loam, occasionally intercalated with weakly developed soils. There is little difference between the YDB layer and surrounding alluvial sediment, although the deposits from 10 to 40 cm above the YDB appear slightly darker. Five 8-cm-thick

continuous samples were taken at low resolution across a 40-cm interval from 311 to 351 cmbs, and the 8-cm-thick YDB sample at a depth of 327 to 335 cmbs displayed a peak of 100 spherules/kg.

**Table S6.** Big Eddy, Missouri. Dates used for age-depth model are from Hajic et al. (69) and Lopinot et al. (70, 71). The ages of the two boundaries highlighted in yellow were used to calculate the age of the YDB layer, highlighted in green. Age-depth plot is **Fig. 2** of the main manuscript.

| plot is <b>rig. 2</b> of the main | Dept  |     |       | UNMO    | DELED ( | BP)   |      | Modelle  | d (BP) |       |     | Amode | el=101.7  |
|-----------------------------------|-------|-----|-------|---------|---------|-------|------|----------|--------|-------|-----|-------|-----------|
| Laboratory #                      | μ     | σ   | (cm)  | 95.4% ı |         | μ     | σ    | 95.4% ra |        | μ     | σ   |       | all=101.5 |
| Boundary                          |       |     | ` ,   |         |         | •     |      |          | 10920  |       | 135 |       |           |
| R_Date AA-35462                   | 9835  | 70  | 283.0 | 11600   | 11105   | 11270 | 95   | 11465    | 10920  | 11235 | 135 | 107.8 | Charcoal  |
| R_Date AA-72611                   | 9751  | 64  | 285.0 | 11275   | 10805   | 11145 | 105  | 11470    | 10970  | 11255 | 125 | 114.2 | Charcoal  |
| R Date AA-72609                   | 9924  | 50  | 286.0 | 11605   | 11225   | 11360 | 100  | 11540    | 10970  | 11285 | 130 | 106.2 | Charcoal  |
| R_Date AA-72610                   | 10440 | 160 | 294.0 | 12705   | 11770   | 12270 | 245  | 12275    | 11255  | 11840 | 280 | 92.1  | Charcoal  |
| R_Date AA-26653                   | 10185 | 75  | 298.0 |         | 11405   | 11855 | 165  | 12315    | 11365  | 11930 | 235 | 97.1  |           |
| R_Date AA-75719                   | 10506 | 53  | 303.0 | 12640   | 12155   | 12455 | 105  | 12520    | 11785  | 12160 | 185 | 93.2  | Charcoal  |
| R Date AA-27487                   | 10400 | 75  | 306.0 | 12540   | 12020   | 12270 | 140  | 12525    | 11885  | 12215 | 160 | 104.3 | Charcoal  |
| R_Date AA-27480                   | 10340 | 100 | 308.0 | 12540   | 11810   | 12175 | 190  | 12545    | 11925  | 12245 | 155 | 109.4 | Charcoal  |
| R_Date AA-29022                   | 10430 | 70  | 313.0 | 12555   | 12065   | 12310 | 135  | 12645    | 12035  | 12340 | 155 | 103.2 | Charcoal  |
| R_Date AA-75720                   | 10896 | 54  | 315.0 | 12890   | 12690   | 12770 | 50   | 12735    | 12090  | 12410 | 165 | 102.9 | Charcoal  |
| R_Date AA-72607                   | 9960  | 920 | 317.0 | 14070   | 9140    | 11625 | 1230 | 12755    | 12120  | 12440 | 165 | 105.1 | Charcoal  |
| R_Date AA-27488                   | 10470 | 80  | 321.0 | 12620   | 12080   | 12365 | 145  | 12790    | 12195  | 12510 | 155 | 103.6 | Charcoal  |
| R_Date AA-27485                   | 11280 | 75  | 322.0 | 13295   | 13025   | 13150 | 70   | 12895    | 12340  | 12640 | 145 | 100.4 | Charcoal  |
| R_Date AA-72612                   | 10959 | 54  | 322.0 | 12980   | 12715   | 12825 | 70   | 12905    | 12390  | 12675 | 130 | 105.1 | Charcoal  |
| R_Date Beta-230984                | 10940 | 60  | 322.0 | 12975   | 12705   | 12815 | 70   | 12910    | 12415  | 12690 | 125 | 105.6 | Charcoal  |
| R_Date AA-27481                   | 11160 | 75  | 326.0 | 13155   | 12805   | 13005 | 90   | 12925    | 12480  | 12725 | 115 | 94.2  | Charcoal  |
| YDB layer top                     |       |     |       |         |         |       |      | 12935    | 12495  | 12735 | 110 |       |           |
| R_Date AA-25778                   | 10260 | 85  | 328.0 | 12400   | 11645   | 12020 | 190  | 12400    | 11645  | 12020 | 190 | 0     | Charcoal  |
| R_Date AA-27486                   | 11900 | 80  | 331.0 | 13980   | 13545   | 13725 | 110  | 12945    | 12540  | 12755 | 100 | 103   | Charcoal  |
| R_Date AA-26654                   | 10710 | 85  | 333.0 | 12755   | 12435   | 12640 | 65   | 12950    | 12555  | 12765 | 95  | 102.4 | Charcoal  |
| YDB layer base                    |       |     |       |         |         |       |      | 13010    | 12560  | 12790 | 105 |       |           |
| R_Date AA-27482                   | 11190 | 75  | 338.0 | 13205   | 12835   | 13045 | 90   | 13085    | 12590  | 12830 | 115 | 95.7  | Charcoal  |
| R_Date AA-72608                   | 12450 | 300 | 347.0 | 15620   | 13750   | 14650 | 485  | 13155    | 12675  | 12900 | 120 | 80.4  | Charcoal  |
| R_Date AA-26655                   | 10940 | 80  | 347.0 | 13005   | 12700   | 12835 | 85   | 13165    | 12685  | 12910 | 120 | 92.4  | Charcoal  |
| R_Date AA-34586                   | 12320 | 130 | 358.0 | 15015   | 13945   | 14415 | 275  | 14150    | 12970  | 13680 | 305 | 100.3 | Charcoal  |
| R_Date AA-34587                   | 11930 | 110 | 364.0 | 14065   | 13490   | 13780 | 140  | 14210    | 13245  | 13785 | 240 | 97.1  | Charcoal  |
| R_Date AA-72613                   | 11960 | 270 | 373.0 | 14875   | 13270   | 13955 | 405  | 14440    | 13475  | 13960 | 230 | 109.1 | Charcoal  |
| R_Date AA-34588                   | 12250 | 100 | 375.0 | 14715   | 13830   | 14245 | 225  | 14535    | 13545  | 14020 | 235 | 107.5 | Charcoal  |
| R_Date AA-34589                   | 11375 | 80  | 383.0 | 13385   | 13075   | 13220 | 80   | 13385    | 13075  | 13220 | 80  |       |           |
| R_Date AA-27483                   | 11910 | 440 | 384.0 | 15315   | 12935   | 14040 | 625  | 15030    | 13705  | 14320 | 345 | 91.3  | Charcoal  |
| R_Date AA-34590                   | 12590 | 85  | 386.0 | 15235   | 14405   | 14875 | 210  | 15115    | 13795  | 14450 | 355 | 91.2  | Charcoal  |
| R_Date AA-27484                   | 12700 | 180 | 396.0 | 15680   |         | 15025 | 360  | 15455    | 13895  |       | 395 | 100.6 |           |
| Boundary                          |       |     |       |         |         |       |      | 15455    | 13895  | 14705 | 395 |       |           |
| P_Sequence Big Eddy               | ,     |     |       |         |         |       |      |          |        |       |     |       |           |
|                                   |       |     |       |         |         |       |      |          |        |       |     |       |           |
| YDB age from Priors               |       |     |       |         |         |       |      |          |        |       |     |       |           |
| Big_Eddy_YDB_layer                |       |     |       |         |         |       |      | 12935    | 12580  | 12770 | 85  |       |           |

See main manuscript Table 1 and Tables S1-S2 for details on stratigraphy, sampling, and proxies observed.



**Fig. S6.** Model for Bull Creek, Oklahoma. Biostratigraphic evidence indicates a significant expansion of grasslands (prairie) that occurred at the Younger Dryas onset, consistent with the Bayesian age of the YDB layer (50, 72). This style of age-depth model using probability curves was used because the deposition was judged to be reasonably continuous.

Table S7. Bull Creek, Oklahoma. Dates from Bement et al. (72) and Conley et al. (73). Yellow equals YDB top and base.

|                     |       |     | Depth | UNMO  | DELED ( | BP)   |      | Model   | ed (BP | )     |     | Amod  | e I=100.2     |
|---------------------|-------|-----|-------|-------|---------|-------|------|---------|--------|-------|-----|-------|---------------|
| Laboratory #        | μ     | σ   | (cm)  | 95.4% | range   | μ     | σ    | 95.4% ו | range  | μ     | σ   | Aover | all=100.7     |
| Boundary            |       |     |       |       |         |       |      | 7405    | 6855   | 7110  | 125 |       |               |
| R_Date Beta-191039  | 6200  | 90  | 55    | 7315  | 6860    | 7095  | 115  | 7405    | 6855   | 7110  | 125 | 97.3  | sed. organics |
| R_Date Beta-184850  | 7660  | 80  | 82    | 8600  | 8340    | 8465  | 70   | 8605    | 8175   | 8420  | 120 | 100.2 | sed. organics |
| R_Date Beta-191040  | 8670  | 990 | 119   | 12720 | 7820    | 10125 | 1305 | 10980   | 8650   | 9810  | 615 | 126.1 | sed. organics |
| R_Date Beta-184851  | 9850  | 90  | 156   | 11705 | 11095   | 11320 | 150  | 11605   | 10855  | 11240 | 170 | 106   | sed. organics |
| R_Date Beta-184852  | 10400 | 120 | 224.5 | 12635 | 11825   | 12255 | 200  | 12540   | 12025  | 12290 | 140 | 115.2 | sed. organics |
| R_Date Beta-262537  | 10410 | 70  | 226.5 | 12545 | 12045   | 12285 | 135  | 12550   | 12065  | 12315 | 135 | 100.4 | sed. organics |
| R_Date Beta-180546  | 10850 | 210 | 238   | 13185 | 12170   | 12760 | 225  | 12705   | 12350  | 12565 | 95  | 93.9  | sed. organics |
| R_Date Beta-262538  | 10750 | 70  | 239   | 12755 | 12565   | 12675 | 50   | 12710   | 12385  | 12580 | 90  | 74    | sed. organics |
| R_Date Beta-262539  | 10640 | 70  | 256   | 12720 | 12425   | 12605 | 70   | 12725   | 12475  | 12620 | 70  | 107.7 | sed. organics |
| R_Date Beta-184853  | 10350 | 210 | 270.5 | 12685 | 11400   | 12100 | 340  | 12685   | 11405  | 12100 | 340 | 3.9   | sed. organics |
| R_Date Beta-262540  | 10870 | 70  | 293.5 | 12935 | 12675   | 12770 | 60   | 12935   | 12635  | 12765 | 70  | 91.7  | sed. organics |
| YDB_top             |       |     |       |       |         |       |      | 12985   | 12660  | 12805 | 80  |       |               |
| R_Date Beta-184854  | 11070 | 60  | 298   | 13075 | 12780   | 12930 | 80   | 13045   | 12715  | 12875 | 85  | 98.9  | sed. organics |
| YDB_base            |       |     |       |       |         |       |      | 13060   | 12710  | 12890 | 115 |       |               |
| P_Sequence Bull Cre | eek   |     |       |       |         |       |      |         |        |       |     |       |               |
|                     |       |     |       |       |         |       |      |         |        |       |     |       |               |
| YDB age from Priors |       |     |       |       |         |       |      |         |        |       |     |       |               |
| Bull_Crk_YDB_layer  |       |     |       |       |         |       |      | 12995   | 12710  | 12840 | 75  |       |               |

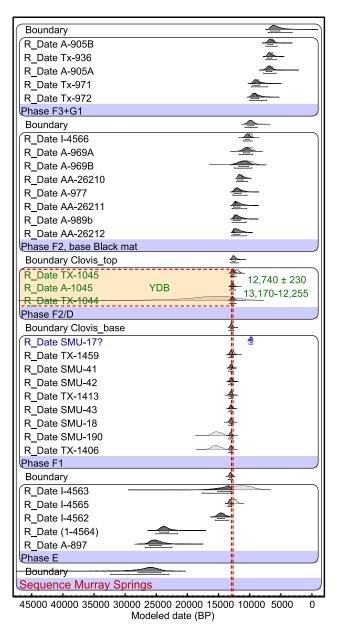
# Daisy Cave, California

following information was extracted from Kinzie et al. (20). See main manuscript Table 1 and Tables S1-S2 for other site northeast coast of San Miguel Island off the Southern California coast. Situated ≈15 km west of Arlington Springs, where human one of several sites demonstrating that Paleo-Indians had the last 13,000 years.

Except for the age model and data table below, the boats capable of reaching the islands. Paleo-Indian artifacts dating to the latter part of the Younger Dryas episode (≈11,500 Cal B.P.) are found in correct chronostratigraphic position information. This cave/rockshelter complex is located on the higher in the profile, as expected (74). Cut by erosion into a cliff overlooking the Pacific Ocean, the cave is currently ≈15 m above modern sea level, which was ≈60-70 m lower at 12,800 bones have been dated to ≈13,000 Cal B.P., Daisy Cave was Cal B.P. Because the ocean floor drops off rapidly adjacent to occupied by Paleo-Indian people at  $\approx 11,700$  Cal B.P., and is the cave, the site has remained close to the coastline during

Table S8. Daisy Cave, CA. Dates are from Erlandson et al. (74), <1 m away from the sampling trench. Dates on marine mollusca (red text) were not used because of the marine reservoir age offset. Age-depth plot is Fig. 3 in the main manuscript.

|                         |       | Depth | UNMO  | DELED ( | BP)   |       | Model | led (BP | )     |       | Amod | el=99.6 |               |
|-------------------------|-------|-------|-------|---------|-------|-------|-------|---------|-------|-------|------|---------|---------------|
| Laboratory #            | μ     | σ     | (cm)  | 95.4%   | range | μ     | σ     | 95.4% ı | range | μ     | σ    | Aover   | all=99.6      |
| Boundary                |       |       |       |         |       |       |       | 3755    | -300  | 2360  | 1250 |         |               |
| R_Date A1: CAMS-8864    | 3220  | 70    | n/a   | 3615    | 3250  | 3450  | 80    | 3880    | 3240  | 3515  | 150  | 100.3   | Charred tw ig |
| R_Date A3: CAMS-9095    | 3110  | 60    | n/a   | 3450    | 3170  | 3310  | 75    | 3780    | 3140  | 3385  | 150  | 100.2   | Charred tw ig |
| R Date C: CAMS-8862     | 6000  | 70    | 5.1   | 7145    | 6665  | 6850  | 95    | 7285    | 6645  | 6905  | 160  | 100     | Charred tw ig |
| R Date E1: CAMS-8866    | 7810  | 60    | 16.0  | 8855    | 8425  | 8605  | 95    | 9045    | 8420  | 8665  | 155  | 100     | Charred tw ig |
| R_Date E4: CAMS-8865    | 8040  | 60    | 28.4  | 9115    | 8650  | 8900  | 110   | 9330    | 8640  | 8955  | 170  | 99.8    | Charred tw ig |
| R_Date F1: CAMS-8867    | 8600  | 60    | 33.9  | 9700    | 9480  | 9585  | 60    | 10015   | 9445  | 9640  | 135  | 99.7    | Charred tw ig |
| R_Date F3: CAMS-8863    | 8810  | 80    | 47.3  | 10170   | 9600  | 9880  | 160   | 10330   | 9555  | 9935  | 205  | 100     | Charred tw ig |
| R Date G: CAMS-9094     | 10390 | 130   | 54.1  | 12645   | 11800 | 12230 | 220   | 12740   | 11660 | 12230 | 260  | 97.5    | Charcoal      |
| Phase Upper section     |       |       |       |         |       |       |       |         |       |       |      |         |               |
| Boundary YDB_age        |       |       |       |         |       |       |       | 13320   | 12050 | 12730 | 320  |         |               |
| R Date I: CAMS-9096     | 11180 | 130   | 90.3  | 13285   | 12760 | 13025 | 135   | 13440   | 12740 | 13080 | 180  | 101.3   | Charcoal      |
| Phase Dark layer        |       |       |       |         |       |       |       |         |       |       |      |         |               |
| Boundary                |       |       |       |         |       |       |       | 13755   | 12860 | 13335 | 225  |         |               |
| R Date J: CAMS-14369    | 11700 | 70    | 102.8 | 13725   | 13405 | 13535 | 80    | 13950   | 13340 | 13595 | 150  | 99.9    | Charred tw ig |
| Phase Low er Section    |       |       |       |         |       |       |       |         |       |       |      |         |               |
| Boundary                |       |       |       |         |       |       |       | 15380   | 13420 | 14105 | 550  |         |               |
| Sequence Daisy Cave     |       |       |       |         |       |       |       |         |       |       |      |         |               |
|                         |       |       |       |         |       |       |       |         |       |       |      |         |               |
| Skipped dates on shells |       |       |       |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-15619       | 3430  | 90    | N/A   |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-49997       | 3510  | 80    | N/A   |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-15620       | 6380  | 110   | 5.1   |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-52359       | 6500  | 80    | 5.1   |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-15621       | 8460  | 100   | 16.0  |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-15622       | 8730  | 120   | 28.4  |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-15623       | 8900  | 120   | 33.9  |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-49948       | 9360  | 90    | 47.3  |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-52360       | 10600 | 70    | 54.1  |         |       |       |       |         |       |       |      |         |               |
| R_Date Beta-14660       | 10700 | 90    | 54.1  |         |       |       |       |         |       |       |      |         |               |


# **Murray Springs, Arizona**

Except for the age model and data table below, the following information was extracted with minor changes from Wittke et al. (19). See main manuscript Table 1 and Tables S1-S2 for other site information. The stratigraphy of this site has been described in much detail by Haynes and Huckell (75), including the identification of lithologic units, or strata (identified as Phases in Fig. S7 and Table S9). Marl deposits (stratum E) are locally incised and filled with or overlain by sandy and gravelly stream-channel alluvium (stratum F1). Based on radiocarbon dating and the presence of Clovis artifacts associated with mammoth bones, Haynes and Huckell (75) concluded that stratum F1 is of Clovis age. Beginning at the onset of Younger Dryas cooling at ≈12,800 Cal B.P., a thin intermediate layer, stratum F2/D, was deposited atop stratum F1. This unit is frequently capped by the distinctive carbon-rich "black mat" (stratum F2) of Haynes (76), mostly of algal origin, but also containing charcoal. The black mat, in turn, is overlain in places by silt (stratum F3), resulting from alluvial deposition, including slopewash.

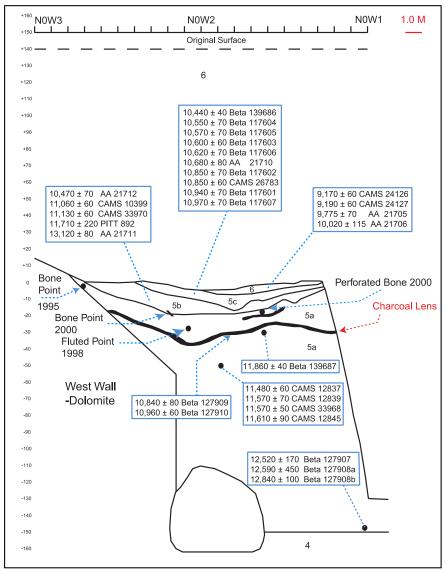
Ten 1-cm to 5-cm-thick discontinuous samples of bulk sediment were collected from a 46-cm-thick interval of sediment between 216 and 262 cmbs, and Vance Haynes, principal site investigator who assisted with sampling, identified these samples as belonging to strata E, F1, and F2. The YDB is a 1-cm-thick layer at 246 to 247 cm between stratum F1 and F2 (in stratum F2/D), which itself is discontinuous across the approximately 300×400-m excavation area. The YDB layer is marked by distinct abundance peaks in impact-related spherules, melt-glass, nanodiamonds, glass-like carbon, aciniform carbon, PAHs, fullerenes, and iridium (4, 19, 20, 44). Haynes et al. (46) independently confirmed the spherule abundance peak in the same stratum, but speculated about a non-impact origin, although offered no supporting evidence for that interpretation.

Haynes (76) observed that the black mat deposits were draped over the Clovis artifacts, articulated megafaunal skeletons, and Paleo-Indian campsites at Murray Springs, and therefore, had been deposited within "a few weeks or months after the Clovis departure." Afterwards, the entire state of Arizona was abandoned for "500 years or more after the Clovis folks had left" (77). No in situ Clovis artifacts have been found above the YDB layer throughout the western U.S.A., consistent with a significant human population decline and/or reorganization across much of North America at ≈12,800 Cal B.P. (78).

Meltzer et al. (13) argued against compiling dates from correlated strata that are spread laterally across a site, such as at Murray Springs. Although we agree that such dates are not as robust as using those from the same stratigraphic profile, this practice nevertheless provides valuable data and is widely used in Bayesian analysis (79, 80, 81, 82). When such dates are used at the same site, a discrete and clearly identifiable stratum can be dated in one part of a site, and then, that date can be assigned to the same clearly identifiable stratum at other parts of the site, albeit with greater uncertainty. In this contribution, spatially scattered dates were used only at independently dated sites, where we adopted the stratigraphic correlations published by the site's independent investigators, who were most familiar with the local stratigraphy. Furthermore, for nearly all YDB sites with spatially separated dates, one or more YDB dates came directly from or within a few meters of the sampled YDB layer.



**Fig. S7.** Murray Springs, age-sequence model. The three dates highlighted in yellow (YDB) are on charcoal produced by Clovis campfires (76) that are contemporary with the YDB event. Strata are shown as Phases.


**Table S9.** Murray Springs, AZ. All dates are from independent site investigators (75). The strata sampled and the distances from the sampling site are shown in columns 4-5, based on Fig. 1.3 and Table A.1 in Haynes and Huckell (75). To establish a more robust age-sequence model, only those dates from within 40 m of the sampling site were used (column 5, below); one date (TX-1459) on a Clovis-age hearth is within ≈10 m of the sampling site. For date SMU-17, Haynes and Haas (83) reported that this was measured on charcoal, following contamination with wood preservative; OxCal rejected this sample as an outlier.

|                             |          |      | Stratum &       |    | <b>UNM O</b> | DELED ( | BP)   |      | Model | led (BP | ')    |      | Amodel=80.5   |
|-----------------------------|----------|------|-----------------|----|--------------|---------|-------|------|-------|---------|-------|------|---------------|
| Laboratory #                | μ        | σ    | Distance (m)    |    | 95.4%        | range   | μ     | σ    | 95.4% | range   | μ     | σ    | Aoverall=79.8 |
| Boundary                    | <u> </u> |      |                 |    |              |         |       |      | 7065  | 3180    | 5515  | 1095 |               |
| R Date A-905B               | 5520     | 200  | Profile N, G1a  | 15 | 6790         | 5900    | 6315  | 230  | 7440  | 5585    | 6585  | 475  | 100.1         |
| R Date Tx-936               | 5630     | 130  | Area 1, G1a     | 30 | 6740         | 6180    | 6440  | 140  | 7425  | 5715    | 6670  | 445  | 99.8          |
| R Date A-905A               | 5750     | 250  | Profile N, G1a  | 15 | 7170         | 6000    | 6600  | 290  | 7790  | 5725    | 6810  | 520  | 100.4         |
| R_Date Tx-971               | 7920     | 150  | Area 1, F3      | 30 | 9235         | 8410    | 8795  | 195  | 9780  | 7125    | 8690  | 700  | 100.7         |
| R_Date Tx-972               | 8160     | 130  | Area 1, F3      | 30 | 9465         | 8715    | 9105  | 195  | 10035 | 7270    | 8895  | 730  | 99.1          |
| Phase F3+G1                 |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Boundary                    |          |      |                 |    |              |         |       |      | 10760 | 8770    | 9785  | 515  |               |
| R_Date I-4566               | 8830     | 170  | Profile B, F2   | 10 | 10275        | 9515    | 9905  | 215  | 11010 | 9585    | 10320 | 360  | 98.6          |
| R_Date A-969A               | 8900     | 400  | Area 1, F2c     | 30 | 11180        | 9035    | 10075 | 535  | 11680 | 9510    | 10550 | 540  | 98.9          |
| R_Date A-969B               | 9270     | 800  | Area 1, F2c     | 30 | 12770        | 8640    | 10745 | 1075 | 12510 | 9650    | 11015 | 755  | 111.1         |
| R_Date AA-26210             | 9823     | 46   | Profile B, F2a4 | 10 | 11315        | 11175   | 11235 | 35   | 12105 | 10310   | 11340 | 475  | 99.4          |
| R_Date A-977                | 10250    | 170  | Area 1, F2b     | 30 | 12545        | 11345   | 11970 | 315  | 12765 | 10435   | 11750 | 610  | 100           |
| R_Date AA-26211             | 10325    | 44   | Profile B, F2   | 10 | 12390        | 11975   | 12170 | 120  | 12840 | 10505   | 11855 | 625  | 100.6         |
| R_Date A-989b               | 10360    | 90   | Area 1, F2a     | 30 | 12545        | 11830   | 12215 | 170  | 12855 | 10500   | 11855 | 625  | 98.4          |
| R_Date AA-26212             | 10628    | 60   | Profile B, F2a1 | 10 | 12715        | 12425   | 12600 | 65   | 12895 | 10525   | 11885 | 630  | 98            |
| Phase F2, Black mat at base |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Boundary Clovis_top         |          |      |                 |    |              |         |       |      | 13080 | 11810   | 12500 | 330  |               |
| R_Date TX-1045              | 10260    | 140  | Area 4, F2/D    | 35 | 12530        | 11400   | 12000 | 280  | 13155 | 12165   | 12680 | 250  | 95.8          |
| R_Date A-1045               | 10760    | 100  | Area 4, F2/D    | 35 | 12850        | 12430   | 12675 | 85   | 13220 | 12260   | 12755 | 240  | 98.8          |
| R_Date TX-1044              | 12600    | 2440 | Area 4, F2/D    | 35 | 26535        | 9400    | 17010 | 4960 | 13210 | 12190   | 12725 | 255  | 108.3         |
| Phase F2/D                  |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Boundary Clovis_base        |          |      |                 |    |              |         |       |      | 13330 | 12550   | 12935 | 195  |               |
| R_Date SMU-17               | 8770     | 80   | Area 1, F1      | 30 | 10155        | 9550    | 9820  | 160  | 10155 | 9550    | 9820  | 155  |               |
| R_Date TX-1459              | 10710    | 160  | Profile B, F1   | 10 | 12980        | 12145   | 12595 | 190  | 13375 | 12670   | 13015 | 175  | 111.3         |
| R_Date SMU-41               | 10840    | 70   | Area 2, F1      | 30 | 12880        | 12640   | 12745 | 55   | 13380 | 12675   | 13020 | 175  | 101.3         |
| R_Date SMU-42               | 10840    | 140  | Area 2, F1      | 30 | 13065        | 12540   | 12770 | 135  | 13380 | 12670   | 13020 | 175  | 102.5         |
| R_Date TX-1413              | 11080    | 180  | Area 1, F1      | 30 | 13285        | 12690   | 12960 | 155  | 13380 | 12670   | 13020 | 175  | 101.8         |
| R_Date SMU-43               | 11160    | 110  | Area 2, F1      | 30 | 13240        | 12765   | 13005 | 120  | 13380 | 12670   | 13020 | 175  | 98.8          |
| R_Date SMU-18               | 11190    | 180  | Area 2, F1      | 30 | 13375        | 12720   | 13050 | 175  | 13380 | 12670   |       | 175  | 100.2         |
| R_Date SMU-190              | 12820    | 450  | Area 1, F1      | 30 | 16565        | 13795   | 15220 | 715  | 13380 | 12670   | 13020 | 175  | 83            |
| R_Date TX-1406              | 12940    | 390  | Area 1, F1      | 30 | 16605        | 14095   | 15400 | 640  | 13380 | 12670   | 13020 | 175  | 78.5          |
| Phase F1                    |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Boundary                    |          |      |                 |    |              |         |       |      | 13440 | 12755   | 13090 | 170  |               |
| R_Date I-4563               | 9780     | 1400 | Profile A, E    | 40 | 15990        | 8175    | 11780 | 2005 | 17675 | 12830   | 14675 | 1440 | 51.6          |
| R_Date I-4565               | 10430    | 160  | Profile A, E    | 40 | 12700        | 11770   | 12255 | 250  | 13520 | 12855   | 13180 | 170  | 71.5          |
| R_Date I-4562               | 12310    | 170  | Profile A, E    | 40 | 15050        | 13815   | 14415 | 325  | 15565 | 13340   | 14530 | 560  | 99.9          |
| R_Date I-4564               | 19620    | 380  | Profile A, E    | 40 | 24545        | 22680   | 23645 | 465  | 25100 | 21580   | 23525 | 895  | 100.4         |
| R_Date A-897                | 21200    | 500  | Profile A, E    | 40 | 26565        | 24280   | 25445 | 565  | 26810 | 22430   | 24860 | 1135 | 96.9          |
| Phase E                     |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Boundary                    |          |      |                 |    |              |         |       |      | 32365 | 22945   | 26890 | 2570 |               |
| Sequence Murray Springs     |          |      |                 |    |              |         |       |      |       |         |       |      |               |
|                             |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| YDB age from Priors         |          |      |                 |    |              |         |       |      |       |         |       |      |               |
| Murray_Springs_YDB_layer    |          |      |                 |    |              |         |       |      | 13170 | 12255   | 12740 | 230  |               |

# **Sheriden Cave**

Because of questions raised about the chronostratigraphic record of the site (13), we present here a detailed stratigraphic description of Sheriden Cave. This site is part of the Indian Trails Cave System, represented by six sinkhole entrances, including Sheriden Cave, Sheriden Pit, Cleveland Museum of Natural History Pit, the main entrance of Indian Trail Cavern, and two unnamed sinkholes. Sheriden Cave and the Indian Trails Cave System contain thick stratigraphic sequences of unconsolidated Quaternary sediments, for which six lithologic units have been identified based on changes in sediment color and particle size.

Lithological descriptions of these units and their origins are based on observations from sedimentology, vertebrate paleontology, and archaeology (**Fig. S8**). Evidence exists for limited post-depositional soft sediment deformation, most likely related to freeze-thaw and solifluction processes during the Younger Dryas cooling episode, which sometimes stratigraphically displaced charcoal. Nevertheless, the radiocarbon dates indicate that the overall temporal sequence and stratigraphic integrity are intact. Interpretations of the sedimentary history below include a description of the nature of the units and their contacts (22-29).



**Fig. S8.** Partial stratigraphic profile of Sheriden Cave. The YDB layer coincides with the charcoal lens (red arrow). The dates, shown in <sup>14</sup>C years BP, are laterally separated by up to ≈17 m. In the upper part of Phase 5a, there are three key dates: two are directly from the charcoal-rich layer containing impact proxies and one is directly from a Clovis bone projectile point, just above the charcoal layer. YDB proxies were found only in Phase 5a across an interval of <20 cm and not in any other stratigraphic level, except adjacent to the YDB at low concentrations (19, 20).

# Lithology of Sheriden Cave.

Unit 1 is the oldest and deepest stratum. It is approximately 4 m thick and occurs between 12.5 and 16.5 m below the surface. Unit 1 is a light yellowish brown to dark grayish brown lake clay with higher silt and fine sands representing occasional episodes of turbidity transport (details for all units here and below from (21-29, 84).

Unit 2 is present in the Indian Trails Cave System, but absent in Sheriden Cave.

Unit 3 occurs in Sheriden Cave between 12 and 12.5 m below the surface. There is a transitional contact over 10 cm of a yellowish brown, medium-energy, or mixture of high and low energy, inwash with a high clay-silt-fine-sand ratio and sand-sized ceiling rain. The contact of Unit 3 with Unit 1 is a sharp highly oxidized reddish yellow film. The contact may represent a hiatus in deposition.

Unit 4 is between 10.5 and 12 m below the surface. Unit 4 is brownish gray, clast-supported angular Greenfield Dolomite pebble gravel with occasional glacial faceted and striated igneous and metamorphic pebble lithologies. No

evidence exists of internal stratification, suggesting that Unit 4 is the result of cave roof collapse, sinkhole formation, and debris flow.

Unit 5 is up to 1.5 m in thickness and occurs between 9 and 10.5 m below the surface in the cave; the unit is fossil-rich and artifact-bearing. A lower sharp contact of Unit 5 with Unit 4 undulates laterally across 1-3-cm intervals because of post-depositional deformation, and the unit grades upwards over an interval of approximately 10 cm. The basal portion of Unit 5 is dark gray-and-white, matrix-supported, angular pebble gravel. Pebbles include dolomite, and occasional igneous or metamorphic erratics. The central portion of Unit 5 is thinly bedded gray or blue-gray silt, similar in lithology to the gray silt of Unit 6. Vertebrate fossils and fine pebble-size charcoal fragments are abundant. The sediments are weakly stratified, especially towards its top. Final deposition of this matrix-supported gravel might be related to freeze-thaw and solifluction processes during the Younger Dryas.

Subunit 5a, the upper portion of the unit, contains abundant and diverse late Pleistocene large and small vertebrate fossils and numerous pebble-sized carbonized plant remains. The subunit is also a dark gray-and-white, angular, matrix-supported pebble gravel, but in addition, it displays a sharply demarcated, few-cm-thick, dark charcoal layer containing Clovis artifacts; this is the YDB layer. Pebbles include several dolomite and occasional redeposited igneous and metamorphic erratics. The unit exhibits very weak, planar, internal stratification, and thus, is unlikely to be of debris flow origin. Furthermore, there is no clear upward or downward fining in clast size.

The contact of Units 5 and 6 is a reddish brown, discontinuous sheet of clayey silt, which may be a secondary feature resulting from chemical weathering. There is a sharp, but undulatory contact over a range of 1-3 cm in the central portion of the unit. This undulation is from the curvature of the originally planar silty gravel contact, due to post-depositional soft sediment deformation. There are several interbeds at the contact between Units 5 and 6, and thus, the coarse-grained lithology in Unit 5 does not abruptly change to the fine-grained lithology in Unit 6 across this contact.

Unit 6 is up to 2 m thick between 8 and 9 m below the surface. Early Holocene vertebrates and carbonized plant remains are abundant. The unit is laminated, suggesting episodic and frequent water-borne deposition, possibly sheet wash, with inputs of fine clastics. The source is likely to be eolian or re-worked eolian sediments, possibly loess. The contact with the lower portion of Unit 6 is transitional over approximately 20 cm. The basal contact portion of Unit 6 is an interbedded gray or blue-gray silt and pebbly gray silt and laminated sandy silt. It was deposited in a generally wetter environment than the upper portion of Unit 6. There is approximately 0.5 cm of thick gray silt beds interbedded with silty clay laminae or rhythmites. The thinly bedded gray silt is compatible with accumulation in a ponded, still-water setting,

and possibly with seasonal very-still-water times, possibly due to ice cover and frozen ground allowing the clay to settle out of suspension creating silty clay, varve-like couplets. There are some stringers of fine angular dolomitic pebbles in this deposit reflecting storm-driven influxes of water and sediment. In the basal 10 cm of Unit 6, a fine brown sand exhibits some cross stratification, indicative of deposition under temporarily flowing water. There is a transitional contact between the upper and lower portions of Unit 6 suggesting progressive dropping of the water table and a shift to storm-event driven deposition on a relatively dry surface from subaqueous, rhythmic deposition. The upper part of Unit 6 rises nearly to the bedrock roof and is composed mostly of brown sandy silt. The silt in this unit ultimately filled the cave sometime during the Holocene and remained above the water table.

**Temporal Interpretations.** Units 1, 2, and 3 represent ponded and inwash sediments that are late Pleistocene in age, greater than 50,000 years in age. Overlying radiocarbon ages suggest Unit 4 more likely represents an Older Dryas catastrophic debris flow event soon after the Last Glacial Maximum.

For Unit 5, radiocarbon ages, along with an abundant vertebrate fossil assemblage and Clovis artifacts, demonstrate that sediments began to accumulate during the Allerød climatic episode and continued until the early Younger Dryas. Unit 5a contains a charcoal-rich layer, coincident with the YDB that displays peaks in carbon spherules (148/kg), magnetic grains (2.5 g/kg), impact-related spherules (100/kg), nanodiamonds (400 ppb), and lonsdaleite-like nano-crystals. YDB proxies were not observed in Units 6, 4, 3, 2, and 1.

For Unit 6, radiocarbon ages and vertebrate fossil assemblages show that the unit represents early Holocene ponded sediments. It is possible, however, that the last cave filling may have occurred sometime between the early and middle Holocene.

**Table S10.** Sheriden Cave, OH. Dates from (21-29, 84, 85). Dates marked with "E" are dates on bones of extinct megafaunal, and "C" are dates on Clovis bone artifacts. The YDB age for Sheriden Cave is based on two radiocarbon dates from a single, thin, charcoal-rich layer that contains impact proxies (19, 20, 21-29). Using those two dates of 10,840 ± 80 and 10,960 ± 60 <sup>14</sup>C BP, we calculated a YDB average age of 12,840 ± 120 Cal B.P., which agrees with the published YDB age range. A Clovis bone projectile point, dating to 12,765 ± 30 Cal B.P. (10,915 ± 30 <sup>14</sup>C BP) was found 10 cm above the charcoal layer, along with a Clovis lithic point and another bone point (**Fig. S8**). Because the fire that produced the YDB charcoal lacked fuel inside the cave, the charcoal must have been redeposited from outside, possibly explaining the position of the two Clovis points above the impact-proxy layer. In any event, the dates on charcoal and the bone point are statistically identical. We used OxCal to produce an age-sequence model using the other thirty radiocarbon ages that have been obtained from Quaternary strata in Sheriden Cave (**Fig. 4** in main manuscript). Twenty-six of these radiocarbon ages are from the late Pleistocene stratum of Unit 5 and indicate an approximately continuous record of deposition from ≈16,000 to 12,000 Cal B.P.

|                                     |       |      | Depth  | UNMO   | DELED  | (BP)       |      | Model | led (BP | )      |      | Amo                                              | del=94.9              |
|-------------------------------------|-------|------|--------|--------|--------|------------|------|-------|---------|--------|------|--------------------------------------------------|-----------------------|
| Laboratory #                        | μ     | σ    | (cm)   | 95.4%  |        | ( <i>)</i> | σ    | 95.4% | •       | ,<br>u | σ    | Aove                                             | rall=95.4             |
| Boundary                            | F -   |      | (0111) | 551176 | - unge | <u> </u>   |      | 10525 | 8785    | 9845   |      | 7.10.10                                          |                       |
| R Date CAMS-24126                   | 9170  | 60   | n/a    | 10500  | 10230  | 10350      | 75   | 10650 |         | 10320  |      | 97.5                                             | Wood charcoal         |
| R Date CAMS-24127                   | 9190  | 60   | n/a    | 10510  |        |            | 80   | 10660 |         | 10330  |      | 98.2                                             |                       |
| R Date AA-21705                     | 9775  | 70   | n/a    |        | 10825  |            |      | 11450 |         | 11035  |      |                                                  | Wood charcoal         |
| R Date AA-21706                     | 10020 | 115  | n/a    |        | 11235  |            | _    | 12095 |         | 11420  | _    | 100                                              |                       |
| Phase Unit 6                        | 10020 | 110  | TIVA   | 11000  | 11200  | 11070      |      | 12000 | 10000   | 11120  | 000  | 100                                              | VVOCa Criai Coai      |
| Boundary                            |       |      |        |        |        |            |      | 12645 | 12150   | 12435  | 135  |                                                  |                       |
| R Date Beta-139686                  | 10440 | 40   | n/a    | 12530  | 12120  | 12330      | 115  |       | 12300   |        | 95   | 102                                              | Reindeer collagen     |
| R Date Beta-117604                  | 10550 | 70   | n/a    |        | 12185  |            | 110  |       | 12325   |        | 90   | 110                                              | Wood charcoal         |
| R Date Beta-117605                  | 10570 | 70   | n/a    |        | 12240  |            | _    | 12690 |         |        | 90   | 107                                              | Wood charcoal         |
| R Date Beta-117603                  | 10600 | 60   | n/a    | 12700  |        |            | 75   |       | 12335   |        | 90   | 101                                              | Wood charcoal         |
| R Date Beta-117606                  | 10620 | 70   | n/a    |        | 12420  |            | 80   |       | 12330   |        | 90   | 100                                              | Wood charcoal         |
| R Date AA-21710                     | 10680 | 80   | n/a    |        | 12430  |            | 70   |       | 12335   |        | 90   |                                                  |                       |
| R Date CAMS-26783-(E)               | 10850 | 60   | n/a    | 12840  |        |            | 45   |       | 12335   |        | 90   | 103                                              | Beaver collagen       |
| R Date Beta-117602                  | 10850 | 70   | n/a    |        | 12650  |            | 55   |       | 12335   |        | 90   |                                                  | Wood charcoal         |
| R Date Beta-117601                  | 10940 | 70   | n/a    | 12990  |        | 12825      | 80   |       | 12335   |        | 90   | 107                                              | Wood charcoal         |
| R Date Beta-117607                  | 10970 | 70   | n/a    |        | 12710  |            | 85   |       | 12335   |        | 90   | 105                                              |                       |
| Phase Unit 5C                       | 10070 | 7.0  | TIVA   | 10010  | 127 10 | 12000      | - 00 | 12700 | 12000   | 12000  | - 00 | 100                                              | VVCCC Crici CCCi      |
| Boundary                            |       |      |        |        |        |            |      | 12755 | 12460   | 12605  | 70   |                                                  |                       |
| R Date AA-21712                     | 10470 | 70   | n/a    | 12585  | 12085  | 12370      | 140  | 12780 | 12505   |        | 65   | 80.7                                             | Wood Charcoal         |
| R Date CAMS-10349-(E)               | 11060 | 60   | n/a    | 13070  |        | 12920      | 80   | 12830 | 12520   |        | 75   |                                                  | Peccary collagen      |
| R Date CAMS-33970                   | 11130 | 60   | n/a    | 13105  | -      |            | 75   |       | 12520   |        | 75   | 90.9                                             | , ,                   |
| R Date PITT-0982                    | 11710 |      | n/a    | 14065  |        | 13580      | _    |       | 12520   |        | 75   | 89.1                                             | -                     |
| R Date AA-21711                     | 13120 | 80   | n/a    | 16025  |        | 15735      | 150  | 16025 | 15405   | 15735  | -    | 00.1                                             | Wood Charcoal         |
| Phase Unit 5B                       | 10120 | 00   | TIVA   | 10020  | 10400  | 10700      | 100  | 10020 | 10400   | 10700  | 100  |                                                  | vvood Ondredal        |
| Boundary YDB top                    |       |      |        |        |        |            |      | 12890 | 12565   | 12730  | 80   |                                                  |                       |
| R Date UCI-38249-(C)                | 10915 | 30   | n/a    | 12825  | 12705  | 12765      | 30   | 12975 |         | 12815  | 80   | 100                                              | Bone Clovis pt        |
| R Date Beta-127909                  | 10840 | 80   | n/a    |        | 12630  |            | 70   | 12985 |         | 12810  | 85   | 99.3                                             | Wood charcoal         |
| R Date Beta-127910                  | 10960 | 60   | n/a    |        | 12715  |            | 75   | 13040 | 12650   |        | 95   | 103                                              | Wood charcoal         |
| Phase Unit 5A upper, charcoal layer | 10000 | - 00 | TIVA   | 12000  | 127 10 | 12000      |      | 10010 | 12000   | 12000  | - 00 | 100                                              | VVCCC Crici CCCi      |
| Boundary YDB base                   |       |      |        |        |        |            |      | 13410 | 12720   | 12990  | 180  |                                                  |                       |
| R Date CAMS-12837-(E)               | 11480 | 60   | n/a    | 13455  | 13190  | 13325      | 65   | 13570 | 12970   |        |      | 101                                              | Bear collagen         |
| R Date CAMS-33968-(E)               | 11570 | 50   | n/a    |        | 13280  |            | 55   |       | 12995   |        |      |                                                  | Bear collagen         |
| R Date CAMS-12839-(E)               | 11570 | 70   | n/a    | 13550  |        | 13400      | 70   | 13635 | 12995   |        |      | 101                                              | Bear collagen         |
| R Date CAMS-12845-(E)               | 11610 | 70   | n/a    |        | 13410  |            | 20   | 13630 | 13040   |        |      | 99.7                                             | Bear collagen         |
| R Date Beta-139687-(E)              | 11860 | 40   | n/a    |        | 13570  |            | 55   | 13865 |         | 13530  |      | 99.9                                             | Bear collagen         |
| R Date Beta-127907-(E)              | 12520 |      | n/a    |        | 14100  |            |      | 15085 |         | 14065  |      | 95.1                                             | Stag-moose collagen   |
| R Date Beta-127908a-(E)             | 12590 | 450  | n/a    | 16210  |        | 14900      | 690  |       | 13060   |        |      | 93.8                                             | Stag-moose collagen   |
| R Date Beta-127908b-(E)             | 12840 | 100  | n/a    | 15710  |        | 15345      | 170  |       | 13160   |        |      |                                                  | Stag-moose collagen   |
| Phase Unit 5A, low er               | 12040 | 100  | II/a   | 137 10 | 13043  | 10040      | 170  | 15440 | 13100   | 17200  | 123  | 30                                               | olag-IIDOSE CollageII |
| Boundary                            |       |      |        |        |        |            |      | 15805 |         | 14555  | 790  |                                                  |                       |
| Sequence Sheriden Cave              |       |      |        |        |        |            |      | 10000 | ***     | 17000  | 130  |                                                  |                       |
| ocquence oneriden oave              |       |      |        |        |        |            |      |       |         |        |      |                                                  |                       |
| YDB age from Priors                 | 1     |      |        |        |        |            |      |       |         |        |      | <del>                                     </del> |                       |
| Sheriden Cave YDB layer             |       |      |        |        |        |            |      | 13110 | 12625   | 12840  | 120  |                                                  |                       |
| onenden_cave_1 bb_layer             |       |      |        |        |        |            |      | 13110 | 12023   | 12040  | 120  |                                                  |                       |

# **MEDIUM-QUALITY CHRONOLOGIES**

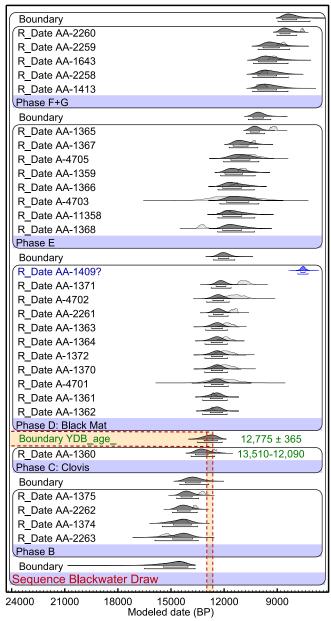
# Barber Creek, North Carolina

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. This 4-meter-thick stratigraphic section is located at a high point,  $\approx 6$  masl, along a paleo-braidplain near the confluence of the Tar River and Barber Creek, North Carolina (86-92). Sediments from 100 to 300 cm below surface (cmbs) vary from coarse sand to fine with some small gravel that is predominantly alluvial in origin. These are overlain by  $\approx 100$  cm of medium to fine quartz sand mainly of eolian origin, representing sediments deposited as sand-sheets or dunes. An abrupt lithologic break and color change at  $\approx 100$  cmbs

represents a change from alluvial to eolian sediment. Guided by OSL and radiocarbon dates and changes in sedimentation, three 2.5-cm-thick sediment samples were collected across a 7.5-cm interval from 95.0 to 102.5 cmbs. Analysis of these samples shows that the YDB occurs in the sample between 97.5 and 100 cmbs. The YDB layer is marked by a peak in impact-related spherules (1035/kg), with no spherules detected above and below that layer. The stratigraphic position of the YDB layer is consistent with earlier research indicating that the same layer corresponds to the onset of the Younger Dryas cooling episode (86-92).

**Table S11.** Barber Creek, North Carolina. Dates are in stratigraphic order within each Sequence, according to the site's investigators (91). The dated samples are from two trenches ≈10 m apart. Three OSL dates (UW1963, FS2797a, and FS2797b) were acquired from the same sample, using both multi-grain aliquots and single grains. Age-depth plot is **Fig. 5** in the main manuscript.

|                         |      |       |      | Depth | UNMO    | DELED ( | BP)   |      | Modell  | ed (BP) |       | Amodel=64.6 |       |            |
|-------------------------|------|-------|------|-------|---------|---------|-------|------|---------|---------|-------|-------------|-------|------------|
| Laboratory #            | Туре | μ     | σ    | (cm)  | 95.4% ı | ange    | μ     | σ    | 95.4% r | ange    | μ     | σ           | Aover | all=61.3   |
| Boundary                |      |       |      |       |         |         |       |      | 11260   | 8375    | 9770  | 720         |       |            |
| R_Date Beta-188955      | 14C  | 8950  | 40   | 55.0  | 10225   | 9915    | 10075 | 95   | 11325   | 9260    | 10170 | 510         | 95.9  | Charcoal   |
| C_Date FS2476           | OSL  | 9740  | 590  | 60.0  | 10860   | 8500    | 9680  | 590  | 11435   | 9550    | 10385 | 485         | 117.6 | Quartz grn |
| R_Date Beta-166239      | 14C  | 8440  | 50   | 65.0  | 9535    | 9315    | 9460  | 50   | 11570   | 9760    | 10570 | 475         | 103.5 | Charcoal   |
| R_Date Beta-150188      | 14C  | 8940  | 70   | 75.0  | 10235   | 9785    | 10045 | 115  | 11880   | 10090   | 10900 | 465         | 98.4  | Charcoal   |
| R_Date Beta-166237      | 14C  | 9280  | 60   | 75.0  | 10650   | 10260   | 10455 | 95   | 12135   | 10345   | 11160 | 465         | 98.5  | Charcoal   |
| C_Date UW 1963          | OSL  | 9100  | 700  | 77.0  | 10440   | 7640    | 9040  | 700  | 12350   | 10495   | 11350 | 480         | 36.4  | Quartz grn |
| C_Date FS2797b =UW 1963 | OSL  | 10390 | 620  | 77.0  | 11570   | 9090    | 10330 | 620  | 12710   | 10755   | 11675 | 505         | 109.1 | Quartz grn |
| C_Date FS2797a =UW 1963 | OSL  | 12800 | 710  | 77.0  | 14160   | 11325   | 12740 | 710  | 13140   | 11215   | 12105 | 490         | 65.2  | Quartz grn |
| C_Date UW 1907          | OSL  | 9200  | 700  | 80.0  | 10540   | 7740    | 9140  | 700  | 10545   | 7750    | 9140  | 700         | 12    | Quartz grn |
| R_Date Beta-166238      | 14C  | 9860  | 60   | 95.0  | 11600   | 11175   | 11290 | 80   | 13380   | 11530   | 12370 | 485         | 94.6  | Charcoal   |
| Sequence Eolian         |      |       |      |       |         |         |       |      |         |         |       |             |       |            |
| C_Date YDB_age: UW 1908 | OSL  | 12100 | 700  | 98.8  | 13440   | 10640   | 12040 | 700  | 13945   | 11865   | 12865 | 535         | 120.2 | Quartz grn |
| R_Date Beta-188956      | 14C  | 10500 | 50   | 105.0 | 12615   | 12150   | 12445 | 100  | 14425   | 12445   | 13350 | 500         | 100.4 | Charcoal   |
| C_Date UW 1909          | OSL  | 14500 | 1000 | 140.0 | 16440   | 12445   | 14440 | 1000 | 15645   | 12695   | 14070 | 760         | 83.5  | Quartz grn |
| C_Date FS2511           | OSL  | 16800 | 1900 | 315.0 | 20535   | 12950   | 16740 | 1900 | 16610   | 12865   | 14595 | 985         | 57.3  | Quartz grn |
| Sequence Alluvial       |      |       |      |       |         |         |       |      |         |         |       |             |       |            |
| Boundary                |      |       |      |       |         |         |       |      | 17330   | 13025   | 14995 | 1165        |       |            |
| Sequence Barber Creek   |      |       |      |       |         |         |       |      |         |         |       |             |       |            |


# **Blackwater Draw, New Mexico**

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. The stratigraphic section at this site, described by Haynes (76), is sandy alluvium, capped by lacustrine diatomite and silty muds. Unit C contains Clovis artifacts and mammoth bones, overlain by diatom-rich Unit D (76). The contact between Units D and C dates to the onset of Younger Dryas cooling (12,950 to 12,650 Cal B.P.) and represents the YDB layer.

From an exposure inside the South Bank Interpretive Center, fifteen discontinuous sediment samples (1 to 10 cm thick) were collected across a 1.67-m interval between 1237.8 and 1238.87 masl. A peak in impact-related spherules has been reported in a 1-cm-thick sample at the contact between Units D and C in three separate publications: Firestone et al. (4), Wittke et al. (19), and one by an independent group,

LeCompte et al. (40). Firestone et al. (4) reported finding 770 spherules/kg, whereas in a sample from the identical location, Surovell et al. (58) reported finding none. Subsequently, LeCompte et al. (40) reported concentrations of 1318/kg in a sample from the identical layer. The finding of 960 spherules per kg in Wittke et al. (19) is consistent with Firestone et al. (4) and LeCompte et al. (40) and contradicts the results of Surovell et al. (58), who did not follow the correct identification protocol (37, 40). Peaks in other proxies included glass-like carbon, charcoal, PAHs, fullerenes, nickel, and iridium.

We also examined sediment blocks collected  $\approx 385$  m north of the Interpretive Center. Called the "Folsom wedge" and "Clovis wedge," those blocks are associated with mammoth bones and Paleo-Indian projectile points, dating to 12,965  $\pm$  65 Cal B.P. Confirming the wide extent of YDB proxies at the Blackwater Draw site, 90 spherules per kg were found in Clovis-age Level C with none above and below.



**Fig. S9.** Blackwater Draw age-sequence model. Phases (units) are in stratigraphic order, as determined by Haynes (93). Because the order of some stratigraphic layers is unclear, dates within Phases are plotted in chronologic order. The YDB proxies occur at the boundary between Phase C and D.

**Table S12.** Blackwater Draw, New Mexico. Dates are from profile A-A', as shown in Fig. 3 and Figs. 8G to 8K of Haynes (93). Stratum and distance from the YDB sampling site are shown in columns 4-5. The profile includes the South Bank Interpretive Center, where 4 dates are from sediment within 7 m of the proxy-rich YDB sample. To help produce a more constrained age-sequence model, only those dates from within 62 m of the sampling site were used (column 5, below). Although the proxy-rich "Folsom wedge" and "Clovis wedge" contained a peak in YDB proxies, a YDB date of 12,965  $\pm$  65 Cal B.P. (11,095  $\pm$  35 <sup>14</sup>C years BP; (94)) was not modeled because the wedges came from 385 m north of the Interpretive Center.

|                    |         |     | Stratum &   |    | UNMOD   | ELED (I | 3P)   |      | Model   | led (BP | )     |     | Amodel=97     |
|--------------------|---------|-----|-------------|----|---------|---------|-------|------|---------|---------|-------|-----|---------------|
| Laboratory #       | μ       | σ   | Distance (m | 1) | 95.4% r | ange    | μ     | σ    | 95.4% ו | range   | μ     | σ   | Aoverall=97.1 |
| Boundary           |         |     |             |    |         |         |       |      | 8955    | 7035    | 8115  | 525 |               |
| R_Date AA-2260     | 6720    | 80  | G/F         | 39 | 7690    | 7435    | 7580  | 65   | 9035    | 7820    | 8475  | 320 | 99.2          |
| R_Date AA-2259     | 7850    | 110 | G,G/F       | 39 | 8995    | 8440    | 8705  | 155  | 10085   | 8280    | 9240  | 470 | 100.6         |
| R_Date AA-1643     | 8230    | 140 | G1/F        | 37 | 9520    | 8775    | 9185  | 185  | 10350   | 8360    | 9420  | 520 | 98.1          |
| R_Date AA-2258     | 8730    | 90  | G1/F (bone) | 37 | 10150   | 9535    | 9770  | 155  | 10390   | 8365    | 9450  | 530 | 104.5         |
| R_Date AA-1413     | 8830    | 120 | F/E         | 39 | 10195   | 9560    | 9900  | 180  | 10395   | 8380    | 9450  | 530 | 98.3          |
| Phase F+G          |         |     |             |    |         |         |       |      |         |         |       |     |               |
| Boundary           |         |     |             |    |         |         |       |      | 10630   | 9370    | 10015 | 320 |               |
| R_Date AA-1365     | 8230    | 100 | E4          | 51 | 9465    | 9000    | 9210  | 135  | 10735   | 9720    | 10230 | 260 | 93.8          |
| R_Date AA-1367     | 9150    | 90  | E5          | 51 | 10560   | 10180   | 10345 | 105  | 11710   | 10110   | 10965 | 420 | 99.9          |
| R_Date A-4705      | 9260    | 320 | E1          | 7  | 11250   | 9555    | 10495 | 450  | 12025   | 10030   | 11045 | 515 | 104.6         |
| R_Date AA-1359     | 9590    | 120 | E2, upper   | 39 | 11215   | 10585   | 10920 | 170  | 12190   | 10235   | 11300 | 510 | 99.7          |
| R_Date AA-1366     | 9890    | 100 | E4          | 51 | 11755   | 11140   | 11390 | 165  | 12350   | 10290   | 11410 | 535 | 104.7         |
| R_Date A-4703      | 10000   | 910 | E3          | 7  | 13610   | 9120    | 11470 | 1150 | 12230   | 10030   | 11160 | 585 | 104.3         |
| R_Date AA-11358    | 10190   | 130 | E2, upper   | 39 | 12390   | 11340   | 11855 | 270  | 12365   | 10275   | 11410 | 545 | 97.4          |
| R_Date AA-1368     | 11400   | 190 | E5          | 51 | 13585   | 12815   | 13245 | 185  | 12360   | 10270   | 11410 | 545 | 97.9          |
| Phase E            |         |     |             |    |         |         |       |      |         |         |       |     |               |
| Boundary           |         |     |             |    |         |         |       |      | 12595   | 11385   | 12000 | 305 |               |
| R_Date AA-1409     | 6660    | 160 | D2b         | 39 | 7840    | 7255    | 7540  | 140  | 7840    | 7255    | 7540  | 140 |               |
| R_Date AA-1371     | 9560    | 180 | D2x2        | 62 | 11275   | 10295   | 10875 | 250  | 12720   | 11605   | 12160 | 280 | 74.3          |
| R_Date A-4702      | 9870    | 320 | D1A1        | 39 | 12515   | 10435   | 11405 | 510  | 12985   | 11695   | 12335 | 315 | 110           |
| R_Date AA-2261     | 9950    | 100 | D2          | 7  | 11815   | 11195   | 11470 | 175  | 12860   | 11760   | 12310 | 275 | 98.1          |
| R_Date AA-1363     | 10160   | 120 | D1gk)       | 53 | 12380   | 11305   | 11795 | 250  | 13035   | 11790   | 12400 | 310 | 102.5         |
| R_Date AA-1364     | 10210   | 110 | D1g         | 53 | 12385   | 11400   | 11895 | 240  | 13080   | 11805   | 12420 | 315 | 101.5         |
| R_Date A-1372      | 10250   | 200 | D/E         | 59 | 12560   | 11290   | 11955 | 345  | 13090   | 11780   | 12420 | 325 | 101.2         |
| R_Date AA-1370     | 10260   | 230 | D2z         | 60 | 12605   | 11260   | 11960 | 370  | 13100   | 11780   | 12415 | 325 | 101.4         |
| R_Date A-4701      | 10470   | 580 | D1e         | 53 | 13440   | 10570   | 12065 | 740  | 13120   | 11740   | 12405 | 340 | 110.9         |
| R_Date AA-1361     | 10640   | 110 | D1a3        | 39 | 12745   | 12170   | 12555 | 130  | 13220   | 11805   | 12475 | 350 | 93.8          |
| R_Date AA-1362     | 10740   | 100 | D1e         | 53 | 12815   | 12425   | 12655 | 85   | 13230   | 11810   | 12480 | 355 | 97.9          |
| Phase D: Black Mat |         |     |             |    |         |         |       |      |         |         |       |     |               |
| Boundary YDB_age   |         |     |             |    |         |         |       |      | 13510   | 12090   | 12775 | 365 |               |
| R_Date AA-1360     | 10580   | 100 | С           | 49 | 12720   | 12150   | 12500 | 145  | 13865   | 12520   | 13210 | 345 | 101.6         |
| Phase C: Clovis    |         |     |             |    |         |         |       |      |         |         |       |     |               |
| Boundary           |         |     |             |    |         |         |       |      | 14515   | 12860   | 13710 | 420 |               |
| R_Date AA-1375     | 11380   | 150 | B1a         | 31 |         | 12935   |       | 145  | 14685   | 13405   | 14065 | 325 | 99.8          |
| R_Date AA-2262*    | 11810   | 90  | B1b2        | 7  | 13800   | 13445   | 13635 | 95   | 14930   | 13485   | 14235 | 365 | 100           |
| R_Date AA-1374     | 12330   | 110 | B2d         | 61 | 14940   | 13990   | 14415 | 245  | 15505   | 13480   | 14440 | 515 | 103           |
| R_Date AA-2263     | 12790   | 160 | B2d         | 61 | 15800   | 14535   | 15215 | 305  | 15940   | 13440   | 14535 | 630 | 91.8          |
| Phase B            |         |     |             |    |         |         |       |      |         |         |       |     |               |
| Boundary           |         |     |             |    |         |         |       |      | 16635   | 13640   | 14980 | 815 |               |
| Sequence Blackwa   | ter Dra | w   |             |    |         |         |       |      |         |         |       |     |               |

# Indian Creek, Montana

Except for the age model and data table below, the following information was extracted with minor modifications from Baker et al. (48). See main manuscript **Table 1** and **Tables S1-S2** for other site information. Indian Creek, located ≈10 km west of Townsend, Montana, features a well-documented archeological excavation, described by Davis and Greiser (95) and Baker et al. (48). This stratigraphic section is approximately 600 meters downstream from the archeological excavation, where the Glacier Peak ash layer is

well-exposed. These two locations were stratigraphically correlated by Baker et al. (48), using the two easily identified volcanic tephra layers, the earliest being from the Glacier Peak eruption. The YDB layer is marked by an abundance peak in nanodiamond-rich carbon spherules, with no impact proxies observed above or below. This layer is a mixture of local sand, gravel, and charcoal, also containing redeposited volcanic ash, interpreted to be a debris flow that post-dated the Glacier Peak eruption.

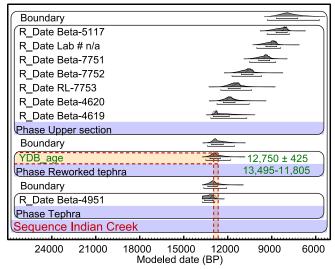
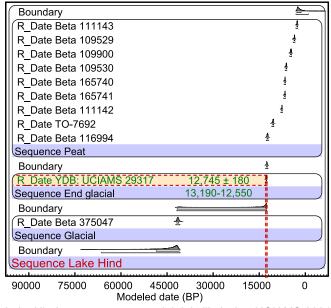



Fig. \$10. Indian Creek age-depth model. YDB is mixed with reworked tephra.


Table S13. Indian Creek, MT. Dates are from Davis and Greiser (95).

|                        |       |     | Depth | O MNU   | DELED ( | BP)   | Model | led (BP | Am ode I=98.8 |       |     |       |          |
|------------------------|-------|-----|-------|---------|---------|-------|-------|---------|---------------|-------|-----|-------|----------|
| Laboratory #           | μ     | σ   | (cm)  | 95.4% ı | range   | μ     | σ     | 95.4% ı | range         | μ     | σ   | Aover | all=98.9 |
| Boundary               |       |     |       |         |         |       |       | 9300    | 5740          | 7690  | 975 |       |          |
| R_Date Beta-5117       | 7210  | 110 | 373   | 8310    | 7825    | 8045  | 115   | 9315    | 7790          | 8420  | 400 | 99    | charcoal |
| R_Date Lab # n/a       | 7980  | 80  | 417   | 9025    | 8600    | 8835  | 120   | 10025   | 8395          | 9090  | 405 | 100.1 | charcoal |
| R_Date Beta-7751       | 8340  | 100 | 479   | 9530    | 9035    | 9315  | 120   | 10520   | 8720          | 9545  | 420 | 100.1 | charcoal |
| R_Date Beta-7752       | 9290  | 120 | 566   | 11065   | 10220   | 10500 | 170   | 11710   | 9680          | 10670 | 480 | 100.1 | charcoal |
| R_Date RL-7753         | 9870  | 130 | 704   | 11935   | 10795   | 11380 | 230   | 12480   | 10370         | 11465 | 510 | 100.9 | charcoal |
| R_Date Beta-4620       | 10160 | 80  | 770   | 12100   | 11400   | 11800 | 180   | 12735   | 10530         | 11780 | 525 | 98.7  | charcoal |
| R_Date Beta-4619       | 10980 | 110 | 791   | 13060   | 12705   | 12875 | 100   | 13160   | 10695         | 12225 | 670 | 102   | charcoal |
| Phase Upper section    |       |     |       |         |         |       |       |         |               |       |     |       |          |
| Boundary               |       |     |       |         |         |       |       | 13375   | 11535         | 12585 | 470 |       |          |
| YDB_age                |       |     |       |         |         |       |       | 13495   | 11805         | 12750 | 425 |       |          |
| Phase Rew orked tephra |       |     |       |         |         |       |       |         |               |       |     |       |          |
| Boundary               |       |     |       |         |         |       |       | 13640   | 12065         | 12915 | 400 |       |          |
| R_Date Beta-4951       | 11125 | 130 | 832   | 13220   | 12725   | 12975 | 130   | 13740   | 12875         | 13290 | 255 | 95.9  | charcoal |
| Phase Tephra           |       |     |       |         |         |       |       |         |               |       |     |       |          |
| Sequence Indian Creek  |       |     |       |         |         |       |       |         |               |       |     |       |          |

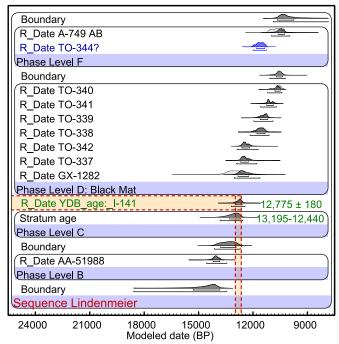
# Lake Hind, Manitoba, Canada

Except for the age model and data table below, the following information was extracted from Running et al. (96) and Boyd et al. (97) with minor modifications. See main manuscript **Table 1** and **Tables S1-S2** for other site information. The sedimentary sequence at Lake Hind is from a cutbank above the Souris River that provides the most complete postglacial stratigraphic section in the Glacial Lake Hind Basin of southwestern Manitoba. The site's stratigraphy has been described in detail elsewhere by the above authors.

In summary, the 11-meter stratigraphic sequence consists of several lithologic units: (i) glaciolacustrine silts and clays close to river level, grading upwards with slightly increasing organics; (ii) then, a distinct peat layer; (iii) succeeded by fluvial marl and silts; (iv) dune sands; (v) fluvial deposits between eolian sand sheets; and (vi) relict parabolic dunes on the modern landscape. The YDB layer was identified by Firestone et al. (4) in the organic-rich upper part of the silt-clay unit, underlying the peat.



**Fig. S11.** Lake Hind age-sequence model. It is likely that UCIAMS 29317 is from the uppermost portion of the YDB layer, which extends further below it.


**Table S14.** Lake Hind, Manitoba, Canada. The youngest 9 dates are from Running et al. (96), and UCIAMS 29317 is from Firestone et al. (4). The radiocarbon dates, Beta-375047 and Beta-375046, are new from carbon-rich bulk sediment; the latter was too old to calibrate in IntCal13. The depth of 1097 cmbs for the YDB radiocarbon age is equivalent to 32 cm in Kinzie et al. (20), using a different starting reference depth.

|                           |        |     | Depth | UNMODE   | LED (B | P)    |     | Modelle  | d (BP) |       |       | Amodel=97.9 |                            |  |  |
|---------------------------|--------|-----|-------|----------|--------|-------|-----|----------|--------|-------|-------|-------------|----------------------------|--|--|
| Laboratory #              | μ      | σ   | (cm)  | 95.4% ra | nge    | μ     | σ   | 95.4% ra | nge    | μ     | σ     | Aoveral     | I=98.1                     |  |  |
| R_Date Beta 111143        | 2500   | 40  | 489   | 2745     | 2435   | 2590  | 85  | 3195     | 2420   | 2730  | 195   | 100.5       | Bison skull collagen       |  |  |
| R_Date Beta 109529        | 3250   | 70  | 547   | 3680     | 3345   | 3485  | 80  | 4095     | 3350   | 3615  | 190   | 99.9        | Hearth soil (acid w ashes) |  |  |
| R_Date Beta 109900        | 4090   | 70  | 580   | 4825     | 4435   | 4625  | 115 | 5215     | 4430   | 4755  | 205   | 99.9        | Bison bone collagen        |  |  |
| R_Date Beta 109530        | 5350   | 50  | 632   | 6280     | 5995   | 6130  | 80  | 6715     | 5995   | 6260  | 185   | 99.8        | Ungulate bone collagen     |  |  |
| R_Date Beta 165740        | 5760   | 50  | 804   | 6715     | 6445   | 6580  | 60  | 7075     | 6440   | 6660  | 170   | 96.7        | Charred foreset material   |  |  |
| R_Date Beta 165741        | 5780   | 50  | 778   | 6670     | 6440   | 6560  | 60  | 7185     | 6500   | 6740  | 185   | 100.3       | Charred foreset material   |  |  |
| R_Date Beta 111142        | 6700   | 70  | 820   | 7675     | 7440   | 7565  | 60  | 8125     | 7445   | 7695  | 180   | 99.9        | Wood                       |  |  |
| R_Date TO-7692            | 9250   | 90  | 1055  | 10660    | 10235  | 10435 | 115 | 11020    | 10245  | 10565 | 205   | 100         | Seeds                      |  |  |
| R_Date Beta 116994        | 10420  | 70  | 1093  | 12550    | 12055  | 12300 | 135 | 12815    | 12015  | 12360 | 200   | 98.7        | Seeds                      |  |  |
| Sequence Peat             |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
| Boundary                  |        |     |       |          |        |       |     | 13040    | 12145  | 12555 | 215   |             |                            |  |  |
| R_Date YDB: UCIAMS 29317  | 10610  | 25  | 1097  | 12675    | 12545  | 12605 | 35  | 13190    | 12550  | 12745 | 180   | 99          | Charcoal                   |  |  |
| Sequence End glacial      |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
| Boundary                  |        |     |       |          |        |       |     | 41830    | 12555  | 22465 | 10085 |             |                            |  |  |
| R_Date Beta 375047        | 36830  | 310 | 1197  | 41975    | 40820  | 41420 | 285 | 42220    | 40825  | 41530 | 340   | 98.8        | Microcharcoal              |  |  |
| Sequence Glacial          |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
| Boundary                  |        |     |       |          |        |       |     | 66605    | 40860  | 48565 | 7955  |             |                            |  |  |
| Sequence Lake Hind        |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
|                           |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
| Date too old to calibrate |        |     |       |          |        |       |     |          |        |       |       |             |                            |  |  |
| Beta-375046               | >43500 |     |       |          |        |       |     |          |        |       |       |             | Microcharcoal              |  |  |

# Lindenmeier, Colorado

Except for the age model and data table below, the following information was extracted with minor modifications from Kinzie et al. (20). See main manuscript **Table 1** and **Tables S1-S2** for other site information. The stratigraphic sequence of this site is dominated by alluvial sediments and loess, as described by Wilmsen and Roberts (98). Fourteen samples were collected from the upper part of Stratum C to the lower part of Stratum D at 2-cm intervals, spanning a depth range of 80 to 113 cmbs. The YDB layer, located from 100 to

102 cm at the interface between Stratum C and D (the black mat), is marked by a peak in nanodiamonds. Stratum C, immediately beneath the YDB layer, is dominantly loess deposits with interbedded alluvial silt, sand, and gravel. The base of stratum D a dark gray, fine-grained, calcareous, humic, clayey silt with occasional gravel, similar to a marsh or bog deposit, and has been correlated with the black mat at Murray Springs and elsewhere (76).



**Fig. S12.** Lindenmeier age-sequence model. Phases (strata) are in stratigraphic order, as determined by the site's principal investigators (98, 99), and dates within each Phase are in chronological order.

**Table S15.** Lindenmeier, CO. Dates are from Haynes et al. (99), who excluded one anomalous date that was accepted and remodeled by OxCal in this age model. The <sup>14</sup>C date on the YDB layer (I-141) is from numerous flakes of charcoal, collected from the interface between Phases C and D (98).

|                          |       |     | Depth | UNM O   | DELED ( | BP)   |     | Model | led (BP | Am ode I=79.8 |      |       |          |
|--------------------------|-------|-----|-------|---------|---------|-------|-----|-------|---------|---------------|------|-------|----------|
| Laboratory #             | μ     | σ   | (cm)  | 95.4% ı | range   | μ     | σ   | 95.4% | range   | μ             | σ    | Aover | all=81.6 |
| Boundary                 |       |     |       |         |         |       |     | 10885 | 7850    | 9965          | 660  |       |          |
| R_Date A-749 AB          | 9440  | 180 | n/a   | 11185   | 10265   | 10740 | 255 | 10980 | 9965    | 10445         | 235  | 86.8  | charcoal |
| R_Date TO-344            | 10060 | 100 | n/a   | 11995   | 11265   | 11620 | 200 | 11995 | 11265   | 11620         | 200  | 0.1   | charcoal |
| Phase Level F            |       |     |       |         |         |       |     |       |         |               |      |       |          |
| Boundary                 |       |     |       |         |         |       |     | 11075 | 10220   | 10590         | 205  |       |          |
| R_Date TO-340            | 9330  | 70  | n/a   | 10710   | 10295   | 10530 | 110 | 11195 | 10400   | 10720         | 200  | 91.6  | charcoal |
| R_Date TO-341            | 9690  | 60  | n/a   | 11235   | 10785   | 11055 | 130 | 11590 | 10705   | 11110         | 210  | 101.3 | charcoal |
| R_Date TO-339            | 9880  | 100 | n/a   | 11755   | 11130   | 11380 | 170 | 11955 | 10890   | 11410         | 240  | 99.9  | charcoal |
| R_Date TO-338            | 10040 | 80  | n/a   | 11950   | 11260   | 11575 | 175 | 12160 | 11115   | 11595         | 250  | 99.9  | charcoal |
| R_Date TO-342            | 10500 | 80  | n/a   | 12655   | 12115   | 12410 | 145 | 12880 | 11720   | 12370         | 275  | 99.9  | charcoal |
| R_Date TO-337            | 10560 | 110 | n/a   | 12710   | 12130   | 12465 | 160 | 12915 | 11785   | 12415         | 275  | 98.7  | charcoal |
| R_Date GX-1282           | 11200 | 400 | n/a   | 14030   | 12145   | 13110 | 445 | 13035 | 11615   | 12440         | 355  | 62.7  | charcoal |
| Phase Level D: Black Mat |       |     |       |         |         |       |     |       |         |               |      |       |          |
| R_Date YDB_age:_I-141    | 10780 | 135 | n/a   | 13000   | 12420   | 12700 | 140 | 13195 | 12440   | 12775         | 180  | 102.9 | charcoal |
| Stratum age              |       |     |       |         |         |       |     | 13820 | 12560   | 13085         | 320  |       |          |
| Phase Level C            |       |     |       |         |         |       |     |       |         |               |      |       |          |
| Boundary                 |       |     |       |         |         |       |     | 14130 | 12700   | 13390         | 390  |       |          |
| R_Date AA-51988          | 12170 | 80  | n/a   | 14295   | 13765   | 14050 | 135 | 14565 | 13435   | 14020         | 245  | 99.4  | charcoal |
| Phase Level B            |       |     |       |         |         |       |     |       |         |               |      |       |          |
| Boundary                 |       |     |       |         |         |       |     | 18575 | 13465   | 14970         | 1155 |       |          |
| Sequence Lindenmeier     |       |     |       |         |         |       |     |       |         |               |      |       |          |

# Lingen, Germany

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. Because Lingen is stratigraphically similar to Lommel and Ommen, details for all three sites are discussed here. From approximately 14,400 to 13,000 years ago, dunelike eolian sediments blanketed extensive areas of northern Europe, extending from the UK to northern Russia and from Denmark to northern France. Called the Late-Pleistocene European Sand Belt, this region contains sediments known as coversands, comprised mostly of unconsolidated quartz sand, deposited during the Allerød warm period.

At ≈12,800 Cal B.P., conspicuous amounts of charcoal became intermixed with the upper few cm of the Usselo layer. At all three sites, this dark portion of the Usselo contains abundance peaks in a variable assemblage of impact-related spherules, charcoal, glass-like carbon, and/or nanodiamonds (4, 18, 49). The abundance of charcoal reflects widespread biomass burning precisely at the onset of Younger Dryas

climate change at these three sites, at Aalsterhut, and at many other locations in the Netherlands, Great Britain, France, Germany, Denmark, and Poland (100, 101). Lingen, Lommel, Ommen, and Aalsterhut are up to 200 km apart, and the sites in Poland are 800 km away from those in Belgium, indicating extensive, coeval wildfires across a large part of northern Europe the time of the YDB impact event. Cultural artifacts are common in the region up until the Younger Dryas onset, marked by abundant charcoal, after which there is little evidence for human occupation across most of northwestern Europe for several centuries, suggesting a population decline related to the impact and/or climate change (78).

At Lingen, ten discontinuous samples of bulk sediment from 3 to 5 cm thick were collected across a 70-cm-thick interval between 7.5 and 77.5 cmbs. There was a peak of 30 impact-related spherules/kg at a depth of 43.5 to 47.5 cmbs in the 3-cm-thick, dark, charcoal-rich YDB layer at the top of the Usselo layer, coincident with the onset of Younger Dryas cooling.

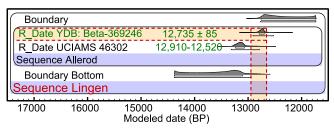



Fig. S13. Age-sequence model for Lingen, Germany.

**Table S16.** Lingen, Germany. The date UCIAMS 46302 is from Wittke et al. (19); Beta-369246 is from this paper, on charcoal taken directly from the proxy-rich YDB sample.

|                         |       |    | Depth | UNMO  | DELED ( | BP)   |    | Model   | led (BP | Amodel=99.4 |     |       |          |
|-------------------------|-------|----|-------|-------|---------|-------|----|---------|---------|-------------|-----|-------|----------|
| Laboratory #            | μ     | σ  | (cm)  | 95.4% | range   | μ     | σ  | 95.4% ı | range   | μ           | σ   | Aover | all=99.4 |
| Boundary                |       |    |       |       |         |       |    | 12770   | 11730   | 12330       | 320 |       |          |
| R_Date YDB: Beta-369246 | 10870 | 40 | 43.5  | 12805 | 12690   | 12745 | 30 | 12910   | 12520   | 12735       | 85  | 98.3  | charcoal |
| R_Date UCIAMS 46302     | 11310 | 60 | 52.5  | 13280 | 13065   | 13170 | 55 | 13315   | 12785   | 13115       | 125 | 100.7 | charcoal |
| Sequence Allerød        |       |    |       |       |         |       |    |         |         |             |     |       |          |
| Boundary Bottom         |       |    |       |       |         |       |    | 14380   | 12935   | 13605       | 425 |       |          |
| Sequence Lingen         |       |    |       |       |         |       |    |         |         |             |     |       |          |

# Lommel, Belgium

Except for the age model and data table below, the following information was extracted with minor modifications from Wittke et al. (19). See Lingen discussion above, along with main manuscript **Table 1** and **Tables S1-S2** for more information. Nine 2-cm to 5-cm-thick discontinuous samples of bulk sediment were from a 60-cm-thick sequence between 17.5 and 77.5 cmbs. A peak of 10 impact-related

spherules/kg occurs in a 5-cm-thick layer at a depth of 48.5 to 52.5 cmbs at the top of the Usselo layer. Firestone et al. (4) reported similar concentrations of 16 spherules/kg from this same level, the YDB layer. In addition, Tian et al. (49) reported the presence of cubic nanodiamonds in the Lommel YDB layer, but not above or below.

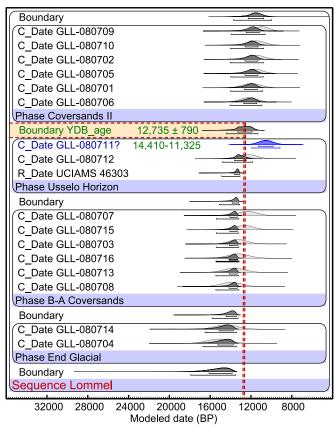



Fig. S14. Lommel age-sequence model. YDB corresponds to the charcoal layer.

**Table S17.** Lommel, Belgium. OSL dates ("C\_Dates") are from Derese et al. (102), except for a single radiocarbon date ("R\_Date") UCIAMS 46303 from Wittke et al. (19). One OSL date in blue was rejected as being too young.

|                      |      |       |      | Depth | UNM O | DELED ( | BP)    |      | Model | led (BP | ')    |      | Amod  | eI=139.3      |
|----------------------|------|-------|------|-------|-------|---------|--------|------|-------|---------|-------|------|-------|---------------|
| Laboratory #         | Туре | μ     | σ    | (cm)  | 95.4% | •       | ,<br>μ | σ    | 95.4% | •       | μ     | σ    | Aover | all=137.8     |
| Boundary             |      |       |      |       |       |         |        |      | 13725 | 9970    | 11660 | 890  |       |               |
| C_Date GLL-080709    | OSL  | 11000 | 700  | n/a   | 12340 | 9540    | 10940  | 700  | 13940 | 10600   | 12040 | 810  | 85.2  | quartz grains |
| C_Date GLL-080710    | OSL  | 11500 | 800  | n/a   | 13035 | 9840    | 11440  | 800  | 14010 | 10745   | 12145 | 795  | 116.8 | quartz grains |
| C_Date GLL-080702    | OSL  | 11600 | 800  | n/a   | 13135 | 9940    | 11540  | 800  | 14025 | 10770   | 12165 | 795  | 119.7 | quartz grains |
| C_Date GLL-080705    | OSL  | 11700 | 800  | n/a   | 13235 | 10040   | 11640  | 800  | 14005 | 10795   | 12180 | 790  |       | quartz grains |
| C_Date GLL-080701    | OSL  | 12000 | 900  | n/a   | 13735 | 10140   | 11940  | 900  | 14040 | 10850   | 12230 | 790  |       | quartz grains |
| C_Date GLL-080706    | OSL  | 12300 | 800  | n/a   | 13835 | 10640   | 12240  | 800  | 14060 | 10950   | 12280 | 775  |       | quartz grains |
| Phase Coversands II  |      |       |      |       |       |         |        |      |       |         |       |      |       |               |
| Boundary YDB_age     |      |       |      |       |       |         |        |      | 14410 | 11325   | 12735 | 790  |       |               |
| C_Date GLL-080711    | OSL  | 10600 | 700  | n/a   | 11940 | 9140    | 10540  | 700  | 11940 | 9145    | 10540 | 700  | 1.1   | quartz grains |
| C_Date GLL-080712    | OSL  | 12400 | 900  | n/a   | 14135 | 10540   | 12340  | 900  | 14800 | 11835   | 13210 | 715  | 113.6 | quartz grains |
| R_Date UCIAMS 46303  | 14C  | 11480 | 100  | n/a   | 13490 | 13100   | 13320  | 100  | 14870 | 13065   | 13595 | 525  | 94.4  | charcoal      |
| Phase Usselo Horizon |      |       |      |       |       |         |        |      |       |         |       |      |       |               |
| Boundary             |      |       |      |       |       |         |        |      | 15090 | 13120   | 13775 | 570  |       |               |
| C_Date GLL-080707    | OSL  | 12400 | 900  | n/a   | 14135 | 10540   | 12340  | 900  | 15390 | 13190   | 13960 | 615  | 61.4  | quartz grains |
| C_Date GLL-080715    | OSL  | 12700 | 900  | n/a   | 14435 | 10840   | 12640  | 900  | 15400 | 13190   | 13965 | 615  | 85.4  | quartz grains |
| C_Date GLL-080703    | OSL  | 13300 | 1000 | n/a   | 15035 | 11440   | 13240  | 900  | 15410 | 13195   | 13985 | 625  | 125.9 | quartz grains |
| C_Date GLL-080716    | OSL  | 13300 | 900  | n/a   | 15235 | 11240   | 13240  | 1000 | 15405 | 13195   | 13990 | 625  | 128.1 | quartz grains |
| C_Date GLL-080713    | OSL  | 13700 | 1000 | n/a   | 15635 | 11640   | 13640  | 1000 | 15445 | 13195   | 14000 | 635  |       | quartz grains |
| C_Date GLL-080708    | OSL  | 14000 | 1000 | n/a   | 15935 | 11940   | 13940  | 1000 | 15445 | 13195   | 14005 | 635  | 127.6 | quartz grains |
| Phase B-A Coversands |      |       |      |       |       |         |        |      |       |         |       |      |       |               |
| Boundary             |      |       |      |       |       |         |        |      | 15790 | 13260   | 14225 | 705  |       |               |
| C_Date GLL-080714    | OSL  | 14500 | 1100 | n/a   | 16635 | 12240   | 14440  | 1100 | 16505 | 13425   | 14730 | 845  | 123.6 | quartz grains |
| C_Date GLL-080704    | OSL  | 15300 | 1100 | n/a   | 17435 | 13040   | 15240  | 1100 | 16705 | 13430   | 14820 | 900  | 95.9  | quartz grains |
| Phase End Glacial    |      |       |      |       |       |         |        |      |       |         |       |      |       |               |
| Boundary             |      |       |      |       |       |         |        |      | 17920 | 13495   | 15390 | 1305 |       |               |
| Sequence Lommel      |      |       |      |       |       |         |        |      |       |         |       |      |       |               |

#### Santa Maira, Spain

described by Aura et al. (103). See main manuscript Table 1 and Tables S1-S2 for more information. The sampled sequence, dating to between ≈17,000 and 5,000 Cal B.P., is composed of sands, mud, and limestone gravel, interbedded with blocks of micritic limestone breccia and conglomerates, range. The YDB layer in the cave is marked by abundances in resulting from the episodic collapse of the cave roof and walls.

The radiocarbon dates used in this model came from sediment samples throughout the cave (<10-m apart), and the majority of them fall into two groups, one that predates the Younger Dryas cooling episode and one that dates to the Holocene (Fig. S15 and Table S18). The distribution of biostratigraphy, suggests a reduction in sedimentation during

The stratigraphy and archaeology of this cave are the Younger Dryas climatic episode, forming only a thin, discontinuous deposit. A single radiocarbon date (Beta-75225). with a calibrated age range of 13,135 to 12,695 Cal B.P., indicates the presence of Younger Dryas sediments in the cave, and this date overlaps the previously published YDB age one sample of cosmic impact proxies that include carbon spherules (188/kg), nanodiamonds inside carbon spherules (38 ppb), charcoal (4.3 g/kg), and glass-like carbon (0.7 g/kg) (Table S1). In addition, the layer contained abundant framboidal spherules (3,668/kg), which are associated with the YDB layer at some other sites. No nanodiamonds, carbon radiocarbon dates, in combination with vertebrate and pollen spherules, glass-like carbon, or framboids were observed in a sample from immediately beneath the YDB layer.

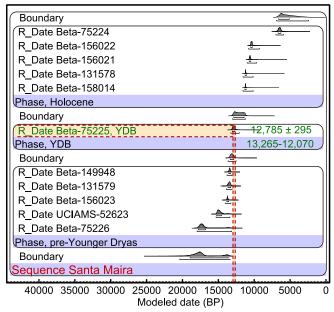
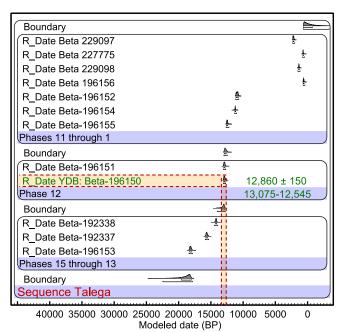



Fig. S15. Santa Maira age-sequence model. Phases are in stratigraphic order with dates in chronological order within each Phase, as determined by the site's investigators (103).


Table S18. Santa Maira, Spain. Cave dates are from Aura et al. (103).

|                           |       |     | Depth | UNMO    | DELED ( | BP)   |     | Model | led (BP | )     |      | Amod  | e I=98.6           |
|---------------------------|-------|-----|-------|---------|---------|-------|-----|-------|---------|-------|------|-------|--------------------|
| Laboratory #              | μ     | σ   | (cm)  | 95.4% ı | ange    | μ     | σ   | 95.4% | range   | μ     | σ    | Aover | all=98.5           |
| Boundary                  |       |     |       |         |         |       |     | 6890  | 2425    | 5330  | 1325 |       |                    |
| R_Date Beta-75224         | 5640  | 140 | n/a   | 6785    | 6125    | 6455  | 150 | 6975  | 5915    | 6440  | 280  | 98.2  | carbon aggregate   |
| R_Date Beta-156022        | 9220  | 40  | n/a   | 10505   | 10255   | 10380 | 70  | 10780 | 9255    | 10240 | 430  | 99.9  | bone red deer      |
| R_Date Beta-156021        | 9370  | 40  | n/a   | 10705   | 10495   | 10600 | 55  | 10990 | 9660    | 10475 | 425  | 99.8  | fruit/seed remains |
| R_Date Beta-131578        | 9760  | 40  | n/a   | 11245   | 11130   | 11195 | 35  | 11560 | 10150   | 11025 | 580  | 99.7  | carbon aggregate   |
| R_Date Beta-158014        | 9820  | 40  | n/a   | 11295   | 11180   | 11230 | 25  | 11575 | 10135   | 11100 | 400  | 99.7  | oak w ood          |
| Phase, Holocene           |       |     |       |         |         |       |     |       |         |       |      |       |                    |
| Boundary                  |       |     |       |         |         |       |     | 13025 | 11210   | 12105 | 570  |       |                    |
| R_Date YDB_age_Beta-75225 | 12615 | 99  | n/a   | 13135   | 12695   | 12905 | 120 | 13265 | 12070   | 12785 | 295  | 101.6 | charcoal           |
| Phase, YDB                |       |     |       |         |         |       |     |       |         |       |      |       |                    |
| Boundary                  |       |     |       |         |         |       |     | 13645 | 12520   | 13080 | 275  |       |                    |
| R_Date Beta-149948        | 11590 | 70  | n/a   | 13560   | 13285   | 13415 | 70  | 13795 | 13105   | 13420 | 160  | 100.2 | bone wild goat     |
| R_Date Beta-131579        | 11620 | 150 | n/a   | 13755   | 13155   | 13460 | 155 | 13885 | 13070   | 13465 | 200  | 101.9 | carbon aggregate   |
| R_Date Beta-156023        | 11920 | 40  | n/a   | 13945   | 13565   | 13735 | 75  | 14050 | 13240   | 13685 | 185  | 99.7  | bone wild goat     |
| R_Date UCIAMS-52623       | 14310 | 190 | n/a   | 15290   | 14390   | 14905 | 225 | 15320 | 13385   | 14670 | 515  | 98.6  | carbon aggregate   |
| R_Date Beta-75226         | 11020 | 140 | n/a   | 17935   | 16900   | 17410 | 260 | 17970 | 13155   | 16570 | 1365 | 95.5  | carbon aggregate   |
| Phase, pre-Younger Dryas  |       |     |       |         |         |       |     |       |         |       |      |       |                    |
| Boundary                  |       |     |       |         |         |       |     | 20385 | 13370   | 17405 | 1865 |       |                    |
| Sequence Santa Maira      |       |     |       |         |         |       |     |       |         |       |      |       |                    |

#### Talega, California

Except for the age model and data table below, the following information was extracted with minor modifications from Wittke et al. (19). See main manuscript Table 1 and Tables S1-S2 for other site information. The stratigraphy of this site has been described in detail by Bergin et al. (104). The stratigraphic section consists largely of alluvial/colluvial sand and silt with occasional peat layers, divided into 15 lithologic units. Trench and cores samples were collected from the surface to 21.5 mbs (meters below surface), distributed along an approximately 50-m-long retaining wall (Locus A in (104)). Stratum 10. between 7.2 to 9.7 mbs. is a soil of Younger Dryas age. Stratum 11, from approximately 9.7 to 12.8 mbs, is a Younger Dryas-age layer of alluvial sand with bands of dark peat, representing possibly marshy conditions that formed at the onset of the Younger Dryas cooling episode. Stratum 12, extending from approximately 12.8 to 15.2 mbs, is alluvial sand and silt, intercalated with black silty loam, deposited in a narrow channel that was cut and refilled rapidly.

Nine 30-cm-thick discontinuous samples of bulk sediment, collected from a 6.7-m-thick interval of sediment between 12.6 and 19.3 mbs (Strata 10-15) were examined for impact-related spherules, carbon spherules, and glass-like carbon. At the base of Stratum 12, a 30-cm-thick YDB layer (≈14.9 to 15.2 mbs) contained a major abundance peak in impact-related spherules (1930 /kg). This is one of the largest peaks yet detected and is at the greatest depth of all YDB sites examined to date (19). This proxy-rich layer dates to 12,860 + 150 Cal B.P., consistent with the age of the YDB elsewhere. This layer is underlain by Stratum 14 (15.2 to 18.4 mbs). comprised of colluvium, largely derived from the Monterey Formation, and this unit, in turn, is underlain by stream-laid Stratum 15. Significantly lower numbers of impact-related spherules were found above and below the YDB layer (19). The presence of these probably resulted from redeposition and/or vertical mixing during the rotary drilling.



**Fig. S16.** Talega age-sequence model. Dates are in chronological order within identified stratigraphic Phases (groups of strata) include dates from multiple cores across the site.

**Table S19.** Talega, CA. Dates are from Bergin et al. (104) and were acquired from 28 boreholes and 5 excavation trenches adjacent to or distributed along a ≈50-m retaining wall.

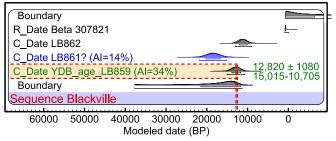
|                         |       |    | UNM OI | DELED ( | BP)   |     | Model   | led (BP | ')    |      | Amod  | el=101.2 |
|-------------------------|-------|----|--------|---------|-------|-----|---------|---------|-------|------|-------|----------|
| Laboratory #            | μ     | σ  | 95.4%  | range   | μ     | σ   | 95.4% ı | range   | μ     | σ    | Aover | all=101  |
| Boundary                |       |    |        |         |       |     | 11285   | 8680    | 10335 | 745  |       |          |
| R_Date Beta-196154      | 9830  | 50 | 11335  | 11170   | 11245 | 40  | 11395   | 10785   | 11170 | 175  | 98    | charcoal |
| R_Date Beta-196155      | 10540 | 50 | 12665  | 12390   | 12505 | 80  | 12675   | 11600   | 12365 | 300  | 100.1 | charcoal |
| Phase 11-10             |       |    |        |         |       |     |         |         |       |      |       |          |
| Boundary                |       |    |        |         |       |     | 13025   | 12120   | 12660 | 265  |       |          |
| R_Date Beta-196151      | 11060 | 60 | 13070  | 12770   | 12920 | 80  | 13075   | 12545   | 12855 | 150  | 103.4 | charcoal |
| R_Date YDB: Beta-196150 | 11070 | 50 | 13065  | 12795   | 12930 | 75  | 13075   | 12545   | 12860 | 150  | 102.6 | charcoal |
| Phase 12                |       |    |        |         |       |     |         |         |       |      |       |          |
| Boundary                |       |    |        |         |       |     | 14070   | 12695   | 13185 | 340  |       |          |
| R_Date Beta-192338      | 12310 | 10 | 14415  | 14090   | 14230 | 80  | 14495   | 13615   | 14140 | 220  | 99.6  | charcoal |
| R_Date Beta-192337      | 13070 | 40 | 15875  | 15415   | 15665 | 110 | 15950   | 14900   | 15540 | 350  | 99.9  | charcoal |
| R_Date Beta-196153      | 14980 | 70 | 18405  | 17975   | 18200 | 110 | 18490   | 16945   | 17975 | 690  | 99.4  | charcoal |
| Phase 15-13             |       |    |        |         |       |     |         |         |       |      |       |          |
| Boundary                |       |    |        |         |       |     | 24780   | 17585   | 19530 | 1735 |       |          |
| Sequence Talega         |       |    |        |         |       |     |         |         |       |      |       |          |

# Topper, South Carolina

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. The stratigraphy of this site is described in detail in Waters et al. (105). This site is located adjacent to the Savannah River that has cut into relatively unconsolidated clastic sediments of Tertiary age to form a terrace (105). Sediments are largely colluvial, quartz-rich sands, displaying several weakly defined stratigraphic units marked by iron staining. In the area sampled, abundant Clovis-age wasteflakes (debitage) occur at the contact between stratigraphic Unit 2b and overlying Unit 3b.

Seven 5-cm-thick discontinuous samples of bulk sediment were collected from a 180-cm-thick sequence between 0 and 180 cmbs. Six samples were analyzed for impact-related spherules revealing a peak of 110 spherules/kg in a 5-cm-thick YDB layer at the base of Unit 3b centered at a depth of 60 cmbs (57.5 to 62.5 cmbs). These results are comparable to abundances of YDB impact-related spherules reported by Firestone et al. (4) of 97 spherules/kg and LeCompte et al. (40) of 260 spherules/kg, all of which contradict Surovell et al. (58), who found no spherules (0/kg). Age-depth plot is **Fig. 6** in the main manuscript.

Table S20. Topper, SC. OSL dates are from Waters et al. (105); the radiocarbon date is from Wittke et al. (19).


|                       |                 |       |      | UNMO  | DELED ( | BP)   |      | Model   | led (BP | )     |      | Amod  | el=124.4      |
|-----------------------|-----------------|-------|------|-------|---------|-------|------|---------|---------|-------|------|-------|---------------|
| Laboratory #          | Туре            | μ     | σ    | 95.4% | range   | μ     | σ    | 95.4% ı | range   | μ     | σ    | Aover | all=123.9     |
| Boundary              |                 |       |      |       |         |       |      | 4930    | 600     | 3255  | 1285 |       |               |
| C_Date UlC1228        | OSL             | 4300  | 300  | 4845  | 3640    | 4240  | 300  | 4980    | 3645    | 4310  | 335  | 96.8  | quartz grains |
| C_Date UIC782         | OSL             | 7300  | 800  | 8840  | 5645    | 7240  | 800  | 8830    | 5520    | 7180  | 830  | 100   | quartz grains |
| C_Date UIC835         | OSL             | 7600  | 900  | 9340  | 5745    | 7540  | 900  | 9325    | 5635    | 7480  | 925  | 100.1 | quartz grains |
| C_Date UlC1229        | OSL             | 8000  | 500  | 8940  | 6940    | 7940  | 500  | 8975    | 6795    | 7880  | 550  | 100   | quartz grains |
| C_Date UIC836         | OSL             | 8000  | 800  | 9540  | 6345    | 7940  | 800  | 9515    | 6225    | 7875  | 835  | 100   | quartz grains |
| C_Date UIC1115        | OSL             | 11000 | 800  | 12540 | 9345    | 10940 | 800  | 12155   | 9020    | 10600 | 800  | 100.9 | quartz grains |
| Phase 3b upper        |                 |       |      |       |         |       |      |         |         |       |      |       |               |
| Boundary              |                 |       |      |       |         |       |      | 12975   | 10240   | 11885 | 795  |       |               |
| R_Date YDB: AA100294  | <sup>14</sup> C | 10958 | 65   | 12995 | 12710   | 12835 | 80   | 13085   | 12365   | 12785 | 185  | 100.4 | charcoal      |
| C_Date UlC1114        | OSL             | 13000 | 900  | 14740 | 11145   | 12940 | 900  | 13845   | 11575   | 12740 | 525  | 122.4 | quartz grains |
| C_Date UIC763         | OSL             | 13200 | 1300 | 15740 | 10545   | 13140 | 1300 | 13970   | 11420   | 12735 | 590  | 125.7 | quartz grains |
| Phase 3b base, Clovis |                 |       |      |       |         |       |      |         |         |       |      |       |               |
| Boundary              |                 |       |      |       |         |       |      | 14795   | 12570   | 13430 | 580  |       |               |
| C_Date UIC837         | OSL             | 14000 | 1200 | 16340 | 11545   | 13940 | 1200 | 15640   | 12815   | 14095 | 760  | 119.3 | quartz grains |
| C_Date UIC764         | OSL             | 14800 | 1500 | 17740 | 11745   | 14740 | 1500 | 16105   | 12795   | 14245 | 895  | 116.5 | quartz grains |
| Phase Level 2b        |                 |       |      |       |         |       |      |         |         |       |      |       |               |
| Boundary              |                 |       |      |       |         |       |      | 18975   | 12815   | 15305 | 1990 |       |               |
| Sequence Topper       |                 |       |      | _     |         |       |      |         |         |       |      |       |               |

## **LOWER-QUALITY CHRONOLOGIES**

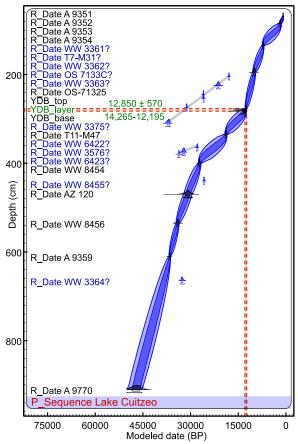
#### Blackville, South Carolina

Except for the age model and data table below, the following information was extracted from Bunch et al. (17) and Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. The lower part of the sequence (272-190 cmbs) is a massive, firm, red clay, separated unconformably at 190 cmbs by overlying coarser late Quaternary unconsolidated loamy to silty alluvium and eolian sediment (190 to surface).

Eleven of 18 continuous 15-cm-thick bulk sediment samples were examined for impact proxies. The YDB was clearly marked in the 15-cm-thick interval from 190-175 cmbs by peaks in impact-related spherules (525/kg), melt-glass (0.06 g/kg), carbon spherules, glass-like carbon, aciniform carbon, and iridium (**Table S1**). The high abundances of spherules extend ≈30 cm above the unconformity, indicating that the YDB layer is stratigraphically unrelated to it.



**Fig. S17.** Blackville age-sequence model. The two oldest OSL dates exhibit an age reversal. The older date (LB858, 12,960  $\pm$  1190 Cal B.P.) has an Agreement Index (marked as "Al") value of 34%, and the younger date (in blue; LB861, 18,540  $\pm$  1680 Cal B.P.) has a lower Agreement Index value of 14%. Consequently, OxCal rejected the younger date as being statistically less likely to be correct than the older date.


Table S21. Blackville, South Carolina. Dates reported in Bunch et al. (17) and this paper.

|                         |      |        |      | Depth | UNMOD   | ELED (I | 3P)   |      | Modell  | ed (BP) |       |      | Amod  | el=105.4    |
|-------------------------|------|--------|------|-------|---------|---------|-------|------|---------|---------|-------|------|-------|-------------|
| Laboratory #            | Туре | μ      | σ    | (cm)  | 95.4% r | ange    | μ     | σ    | 95.4% r | ange    | μ     | σ    | Aover | all=104.7   |
| Boundary                |      |        |      |       |         |         |       |      | 760     | -17885  | -5040 | 5155 |       |             |
| R_Date Beta 307821      | 14C  | 830    | 30   | 20.0  | 790     | 685     | 740   | 35   | 900     | -35     | 600   | 320  | 99.8  | Charcoal    |
| C_Date LB862            | OSL  | 11500  | 1030 | 107.0 | 13495   | 9380    | 11440 | 1030 | 12970   | 8985    | 11010 | 995  | 103.3 | Quartz grns |
| C_Date LB861            | OSL  | 18540  | 1680 | 152.0 | 21835   | 15125   | 18480 | 1680 | 21810   | 15095   | 18480 | 1680 |       | Quartz grns |
| C_Date YDB_age_LB859    | OSL  | 12960  | 1190 | 183.0 | 15275   | 10520   | 12900 | 1190 | 15015   | 10705   | 12820 | 1080 | 106.3 | Quartz grns |
| Boundary                |      |        |      |       |         |         |       |      | 37705   | 11360   | 19620 | 6950 |       |             |
| Sequence Blackville     |      |        |      |       |         |         |       |      |         |         |       |      |       |             |
|                         |      |        |      |       |         |         |       |      |         |         |       |      |       |             |
| Date too old to measure |      |        |      |       |         |         |       |      |         |         |       |      |       |             |
| Beta 207164             | 14C  | >46600 | )    | 210.0 | >46600  |         |       |      | >46600  |         |       |      |       | Charcoal    |

## Lake Cuitzeo, Mexico

Except for the age model and data table below, the following information was modified from Israde et al. (37) and Wittke et al. (19). See main manuscript **Table 1** and **Tables S1-S2** for other site information. From the second largest lake in Mexico, a 27-m-long lake core was recovered, consisting of interbedded lacustrine sands, silts, clays, epiclastites, and tephra layers. A conspicuous, dark, carbon-rich layer,

dominated by clay and silt, occurs between 250 and 282 cmbs and resembles the black mat at other YDB sites across North America. The YDB layer is marked by peaks of impact-related spherules (2055 /kg), nanodiamonds (493 ppb), and carbon spherules (684/kg) in a 5-cm layer between 277.5 to 282.5 cmbs (incorrectly reported previously as 280 to 275 cmbs in both (20 and 37).



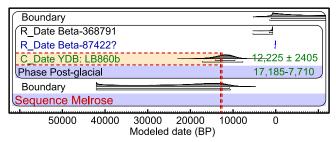
**Fig. S18.** Lake Cuitzeo age-depth model. Bayesian analysis rejected two unusual linear clusters of outliers, shown as blue age distributions connected by gray lines. These indicate the influx of older carbon from an unknown source.

**Dating.** The presence of several anomalously old dates in the lake Cuitzeo section has caused difficulties in producing a robust age-depth model. Therefore, we consider three possible models. (i) In the test shown in **Fig. S18** above, we included the new date on the black mat from the shoreline sequence and then, modeled an age for the YDB layer of  $12,850 \pm 570$  Cal B.P. at 68% (see main paper). (ii) In the second test (not shown), we excluded the shoreline sequence date from the age-depth model, producing an age for the YDB layer of  $\approx 15,300 \pm 1100$  Cal B.P., similar to the minimum age proposed by Blaauw et al. (106). (iii) For the third test (not shown), we included all anomalously old dates and excluded the conflicting younger dates, producing a much older modeled age for the YDB of  $27,100 \pm 400$  Cal B.P., about 9,000 years prior to the last Glacial Maximum.

All three of these models are statistically possible, but the question is which model best fits other available stratigraphic evidence. Israde et al. (37, 107) produced a paleoclimatic record for the lake section, based on pollen, spores, and diatoms. These workers presented clear evidence of a warm paleoclimatic interval of >1000 years, interpreted as the Bølling–Allerød interstadial. This was followed by a distinctive cooling period, interpreted as the Younger Dryas cooling episode. This record is most consistent with model (i) above (Fig. S18) that dates the YDB

to 12,850  $\pm$  570 Cal B.P. (68%). On the other hand, the Lake Cuitzeo record is inconsistent with the YDB dates in alternative model (ii), centered at 15,300 Cal B.P., and model (iii), centered at 27,100 Cal B.P. Both of those place the age of the impact-proxy-rich layer within the last glacial episode, which lacks evidence of any such warm intervals.

Furthermore, the paleoclimatic record in Lake Cuitzeo closely matches the succession of Bølling-Allerød warming. followed by Younger Dryas cooling that is well documented in sedimentary sections over a broad area of Central America and northern South America (see (37), for details). These sites include La Chonta Bog in Costa Rica (108), Lake La Yeguada in Panama (109), Lake Peten Itza in Guatemala (110, 111), and the Cariaco Basin marine core from offshore Venezuela (112, 113). Indeed, Bush et al. (109) identified a "time of crisis" that dates to ≈12,720 Cal B.P. (10,800 ¹4C BP) at the onset of the Younger Dryas episode. Representing the most distinctive layer in this record, the crisis interval is marked by dramatic changes in pollen, diatoms, biotic turnover, clay mineralogy, sedimentary geochemistry, and charcoal influx. The changes occurring in this interval at Lake La Yeguada are similar to those at Lake Cuitzeo, suggesting that both records are contemporaneous. Thus, based on available regional evidence, the best-fitting model places the YDB age at 12,850 ± 570 Cal B.P., but with uncertainty.


**Table S22.** Lake Cuitzeo, Mexico. Dates are from Israde et al. (37), except for date OS-71325 from Kinzie et al. (20) that was acquired on stratigraphically correlated sediment on the lakeshore, adjacent to the lake sampling site. The lakeshore date is from previously acquired archival material, with insufficient sediment available for further investigation of YDB proxies.

|                        |       |      | Depth | UNMO  | DELED ( | BP)   |      | Model   | led (BP | ')    |      | Amod  | e I=91.8    |
|------------------------|-------|------|-------|-------|---------|-------|------|---------|---------|-------|------|-------|-------------|
| Laboratory #           | μ     | σ    | (cm)  | 95.4% | range   | μ     | σ    | 95.4% ו | range   | μ     | σ    | Aover | all=91.7    |
| Boundary               |       |      |       |       |         |       |      | 995     | 630     | 835   | 85   |       |             |
| R_Date A 9351          | 930   | 55   | 70    | 940   | 730     | 845   | 55   | 995     | 630     | 835   | 85   | 100.6 | sed. carbon |
| R_Date A 9352          | 1755  | 115  | 85    | 1930  | 1405    | 1680  | 135  | 1985    | 1300    | 1645  | 170  | 100.3 | sed. carbon |
| R_Date A 9353          | 6165  | 70   | 135   | 7250  | 6890    | 7065  | 95   | 7300    | 6490    | 6970  | 310  | 99.4  | sed. carbon |
| R_Date A 9354          | 8830  | 215  | 195   | 10490 | 9465    | 9920  | 260  | 10415   | 9175    | 9790  | 325  | 102.4 | sed. carbon |
| R_Date WW 3361         | 14720 | 50   | 205   | 18080 | 17725   | 17910 | 85   | 18080   | 17725   | 17910 | 85   |       | sed. carbon |
| R_Date T7-M31          | 17605 | 215  | 225   | 21860 | 20715   | 21295 | 295  | 21865   | 20720   | 21295 | 295  |       | sed. carbon |
| R_Date WW 3362         | 21730 | 70   | 245   | 26115 | 25825   | 25970 | 75   | 26120   | 25825   | 25970 | 75   |       | sed. carbon |
| R_Date OS 7133C        | 21600 | 100  | 255   | 26065 | 25690   | 25880 | 90   | 26065   | 25690   | 25880 | 90   |       | sed. carbon |
| R_Date WW 3363         | 27360 | 130  | 275   | 31435 | 31030   | 31230 | 100  | 31435   | 31030   | 31230 | 100  |       | sed. carbon |
| R_Date OS-71325        | 10550 | 35   | 277   | 12630 | 12415   | 12520 | 60   | 12720   | 12260   | 12500 | 155  | 99    | sed. carbon |
| YDB_top                |       |      |       |       |         |       |      | 13275   | 12100   | 12580 | 310  |       |             |
| YDB_layer              |       |      |       |       |         |       |      | 14265   | 12195   | 12850 | 570  |       |             |
| YDB_base               |       |      |       |       |         |       |      | 14855   | 12265   | 13115 | 725  |       |             |
| R_Date WW 3375         | 32940 | 190  | 310   | 37785 | 36370   | 37030 | 375  | 37790   | 36370   | 37030 | 375  |       | sed. carbon |
| R_Date T11-M47         | 15500 | 130  | 335   | 19030 | 18480   | 18760 | 130  | 19115   | 18320   | 18715 | 220  | 100.1 | sed. carbon |
| R_Date WW 6422         | 23870 | 100  | 365   | 28170 | 27690   | 27915 | 120  | 28170   | 27690   | 27915 | 120  |       | sed. carbon |
| R_Date WW 3576         | 28289 | 120  | 375   | 32685 | 31640   | 32155 | 275  | 32680   | 31635   | 32155 | 275  |       | sed. carbon |
| R_Date WW 6423         | 29490 | 190  | 380   | 34050 | 33305   | 33685 | 180  | 34050   | 33305   | 33685 | 180  |       | sed. carbon |
| R_Date WW 8454         | 22770 | 120  | 400   | 27425 | 26720   | 27115 | 175  | 27465   | 26430   | 27000 | 335  | 95.8  | sed. carbon |
| R_Date WW 8455         | 21440 | 100  | 440   | 25955 | 25555   | 25760 | 100  | 25955   | 25550   | 25760 | 100  | 1.4   | sed. carbon |
| R_Date AZ 120          | 26800 | 900  | 470   | 33170 | 29125   | 31020 | 1000 | 32080   | 29365   | 30720 | 665  | 118.2 | sed. carbon |
| R_Date WW 8456         | 29880 | 280  | 535   | 34530 | 33555   | 34010 | 240  | 34500   | 33310   | 33895 | 295  | 102.6 | sed. carbon |
| R_Date A 9359          | 32565 | 2885 | 610   | 36655 | 36220   | 36430 | 105  | 36730   | 36035   | 36385 | 175  | 100.4 | sed. carbon |
| R_Date WW 3364         | 28600 | 140  | 665   | 33195 | 31990   | 32640 | 290  | 33195   | 31990   | 32640 | 290  |       | sed. carbon |
| R_Date A 9770          | 42400 | 1000 | 910   | 48255 | 44080   | 45990 | 1040 | 49995   | 45185   | 47245 | 1190 | 62.3  | sed. carbon |
| Boundary               |       |      |       |       |         |       |      | 49995   | 45185   | 47245 | 1190 |       |             |
| P_Sequence Lake Cuitze | 90    |      |       |       |         |       |      |         |         |       |      |       |             |
|                        |       |      |       |       |         |       |      |         |         |       |      |       |             |
| Too old to calibrate   |       |      |       |       |         |       |      |         |         |       |      |       |             |
| R_Date WW 3365         | 45110 | 940  | 870   |       |         |       |      |         |         |       |      |       |             |

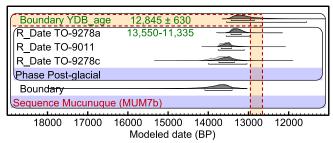
# Melrose, Pennsylvania

Except for the age model and data table below, the following information was extracted from Bunch et al. (17) and Wittke et al. (19) with minor modifications. Detailed stratigraphic information is presented in Bunch et al. (17) and Wittke et al. (19). See main manuscript Table 1 and Tables \$1-\$2 for other site information. During the last Glacial Maximum, the Melrose area in northeastern Pennsylvania lay beneath 0.5 to 1 km of glacial ice that retreated rapidly after ≈18,000 Cal B.P. (114). Surficial sediments at Melrose are represented by unconsolidated latest Quaternary alluvium/colluvium overlying glacial till that, in turn, overlies the Devonian Catskill Formation. A shallow trench was

excavated, and five contiguous samples were taken from 5 to 48 cmbs. The sedimentary section consists of fine-grained, humic colluvium to 38 cmbs, resting on distinctive end-Pleistocene glacial till (diamicton). The YDB layer is marked by a remarkable diversity of proxies with abundance peaks in melt-glass (0.8 g/kg), impact-related spherules (3100/kg), carbon spherules, nanodiamonds (66 ppb), charcoal, and osmium (see main paper). This layer occurs in the interval between 15 and 23 cmbs, ≈15 cm above the till, consistent with deposition during the deglacial episode, after the ice sheet retreated from this area (<18,000 Cal B.P.).



**Fig. S19.** Melrose age-sequence model, including a new date (Beta-368791) at 10 cmbs. The YDB has a modeled age based on an OSL date from just beneath the YDB layer. This age has high uncertainties that overlap the YDB age range.


**Table S23.** Melrose, Pennsylvania. Radiocarbon dates Beta-368791 and Beta-87422 are new. The latter date on a carbon spherule was rejected by OxCal as anomalously young. The LB860b OSL date of 11,700 Cal B.P. (before 2012) from Kinzie et al. (20) has been converted and rounded to 11,640 Cal B.P. (before 1950) to match the age scale used for the radiocarbon dating.

| j.                 |      |       |      | Donth  | UNMO    | OEL ED | /DD\  |      | Madal   | led (BP) |       |      | Am a  | de I=98.9     |
|--------------------|------|-------|------|--------|---------|--------|-------|------|---------|----------|-------|------|-------|---------------|
|                    |      |       |      | Deptin | ONWO    | JELED  | (DP)  |      | wodei   | ieu (BP) |       |      | AIIIO | ue 1–30.3     |
| Laboratory #       | Type | μ     | σ    | (cm)   | 95.4% ı | range  | μ     | σ    | 95.4% ı | range    | μ     | σ    | Aove  | rall=98.9     |
| Boundary           |      |       |      |        |         |        |       |      | 1425    | -20065   | -7420 | 6750 |       |               |
| R_Date Beta-368791 | 14C  | 850   | 30   | 10     | 900     | 690    | 760   | 40   | 5355    | 695      | 1640  | 1305 | 99.6  | charcoal      |
| R_Date Beta-87422  | 14C  | -5    | 25   | 18     | 245     | 35     | 65    | 45   | 245     | 35       | 65    | 45   |       | charcoal      |
| C_Date YDB: LB860b | OSL  | 11700 | 1850 | 28     | 15325   | 7955   | 11640 | 1845 | 17185   | 7710     | 12255 | 2405 | 98.5  | quartz grains |
| Phase Post-glacial |      |       |      |        |         |        |       |      |         |          |       |      |       |               |
| Boundary           |      |       |      |        |         |        |       |      | 42075   | 10610    | 24075 | 9660 |       |               |
| Sequence Melrose   |      |       |      |        |         |        |       |      |         |          |       |      |       |               |

## Mucuñuque (MUM7b), Venezuela

Except for the age model and data table below, the following information was extracted from Mahaney et al. (30-36) with minor modifications. See main manuscript **Table 1** and **Tables S1-S2** for other site information. This site is on a small glaciolacustrine plain at 3800 masl elevation in the Venezuelan Andes. The 2.5-m-thick sampled section is comprised of imbricated outwash, overlying a succession of

stratified sand, gravel, and a manganese-rich black mat layer. These deposits were correlated with deposits further down the valley, representing a re-advance of the glacier during the early Younger Dryas episode. The stratigraphy is described in detail in Mahaney et al. (30-36). The YDB layer immediately is coincident with the dark layer, as it does at some other YDB sites.



**Fig. S20.** Mucuñuque age-sequence model. The available dates are from layers of alluvial clay and peat, ≈20 cm below the YDB layer. There was no datable material in the YDB layer, glacial outwash, or moraine at this site, although the outwash was correlated by Mahaney et al. (31) with nearby deposits that are of Younger Dryas age.

Table S24. Mucuñuque, Venezuela. Radiocarbon dates are from Mahaney et al. (31).

|                    |       |     | Depth | UNMO  | DELED ( | BP)   |     | Model | led (BP | )     |     | Amodel=99.2 |          |  |
|--------------------|-------|-----|-------|-------|---------|-------|-----|-------|---------|-------|-----|-------------|----------|--|
| Laboratory #       | μ     | σ   | (cm)  | 95.4% | range   | μ     | σ   | 95.4% | range   | μ     | σ   | Aover       | all=99.3 |  |
| Boundary YDB_layer |       |     |       |       |         |       |     | 13550 | 11335   | 12845 | 630 |             |          |  |
| R_Date TO-9278a    | 11440 | 100 | 232   | 13460 | 13095   | 13285 | 100 | 13560 | 12885   | 13250 | 190 | 94.2        | charcoal |  |
| R_Date TO-9011     | 11760 | 80  | 235   | 13755 | 13445   | 13595 | 85  | 13765 | 12995   | 13465 | 215 | 100.5       | charcoal |  |
| R_Date TO-9278c    | 11850 | 180 | 235   | 14125 | 13310   | 13720 | 215 | 14045 | 12960   | 13510 | 265 | 104.2       | charcoal |  |
| Phase Post-glacial |       |     |       |       |         |       |     |       |         |       |     |             |          |  |
| Boundary           |       |     |       |       |         |       |     | 15820 | 12890   | 14000 | 775 |             |          |  |
| Sequence Mucunuque |       |     |       |       |         |       |     |       |         |       |     |             |          |  |

## Ommen, Netherlands

Except for the age model and data table below, the following information was extracted from Wittke et al. (19). See Lingen discussion above, main manuscript **Table 1** and **Tables S1-S2** for more information. Seven 5-cm-thick continuous samples of bulk sediment were from a 50-cm-thick

sequence between 92.5 and 142.5 cmbs. The 5-cm-thick YDB layer, from 115 to 120 cmbs, displays a peak in impact-related spherules (5/kg) and nanodiamonds (1439 ppb) within carbon spherules (458/kg).

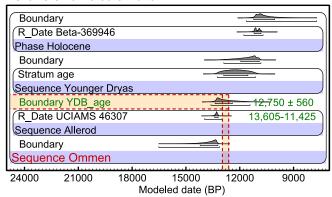
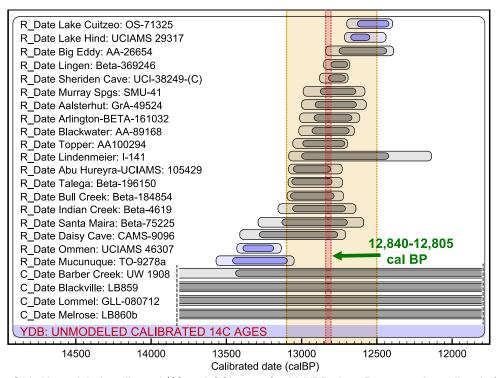



Fig. S21. Ommen age-sequence model. YDB corresponds to charcoal layer.

Table S25. Ommen, Netherlands. The date UCIAMS 46307 is from Wittke et al. (19) and Beta-369946 is new.

|                     |       |    | Depth | UNMO  | DELED ( | BP)   |     | Modell  | ed (BP | )     |     | Amo | odel=99.7  |
|---------------------|-------|----|-------|-------|---------|-------|-----|---------|--------|-------|-----|-----|------------|
| Laboratory #        | μ     | σ  | (cm)  | 95.4% | range   | μ     | σ   | 95.4% r | ange   | μ     | σ   | Aov | erall=99.7 |
| Boundary            |       |    |       |       |         |       |     | 11640   | 7710   | 10395 | 855 |     |            |
| R_Date Beta-369946  | 9640  | 40 | 112.5 | 11190 | 10785   | 10995 | 120 | 11780   | 10695  | 11080 | 250 | 100 | charcoal   |
| Phase Holocene      |       |    |       |       |         |       |     |         |        |       |     |     |            |
| Boundary Transition |       |    |       |       |         |       |     | 12890   | 10815  | 11660 | 570 |     |            |
| Stratum age         |       |    |       |       |         |       |     | 13255   | 11115  | 12205 | 595 |     |            |
| Phase Younger Dryas |       |    |       |       |         |       |     |         |        |       |     |     |            |
| Boundary YDB_age    |       |    |       |       |         |       |     | 13605   | 11425  | 12750 | 560 |     |            |
| R_Date UCIAMS 46307 | 11440 | 35 | 117.5 | 13390 | 13185   | 13280 | 50  | 13970   | 12985  | 13325 | 195 | 99  | charcoal   |
| Phase Allerød       |       |    |       |       |         |       |     |         |        |       |     |     |            |
| Boundary            |       |    |       |       |         |       |     | 16515   | 13115  | 13990 | 800 |     |            |
| Sequence Ommen      |       |    |       |       |         |       |     |         |        |       |     |     |            |


# **UNMODELED SITES**

There are nine unmodeled sites:

- 1. Chobot, Alberta, Canada;
- 2. Gainey, Michigan;
- 3. Kangerlussuaq, Greenland;
- 4. Kimbel Bay, North Carolina;
- 5. Morley, Alberta, Canada;
- 6. Mt. Viso. France/Italy:
- 7. Newtonville, New Jersey;
- 8. Paw Paw Cove, Maryland; and
- 9. Watcombe Bottom, United Kingdom.

For detailed site descriptions, see Bunch et al. (17), Wittke et al. (19), and Kinzie et al. (20), partially summarized in **Tables S1-S2** above. Even though dating is insufficient for robust Bayesian analysis, a

wide range of evidence indicates that all nine are YDB sites. Each contains one or more proxies, including impact-related spherules, melt-glass, carbon nanodiamonds, spherules, glass-like and/or geochemical anomalies. On the other hand, there are few to no proxies above and below the YDB layer. In addition, a YDB age for the proxy-rich layers is supported by biostratigraphy, archaeostratigraphy, climatology, and/or palynology. Because these nine sites contain the same abundance peaks in proxies that are found at well-dated YDB sites, we have proposed that they are of YDB age.



**Fig. S22.** Unmodeled, calibrated  $^{14}$ C and OSL ages for 23 YDB sites. Dates used are directly from the YDB layer or were the closest in age to 12,800  $\pm$  150 Cal B.P. To improve readability, horizontal gray error bars were used, rather than probability distribution curves; light gray bars represent 99% Cl and dark gray equals 95%. The complete bars for the lower 4 OSL dates extend off the scale. The red vertical dashed lines and bar represent the common overlap of 35 years from 12,840 to 12,805 Cal B.P. The orange vertical dashed lines and bar represent 12,800  $\pm$  300 Cal B.P. at 95% Cl. Of the 23 dates, 22 (96%) fall within the YDB range at 99% CI; 19 of 23 dates (83%) overlap from 12,840 to 12,805 Cal B.P. at 95% Cl. This indicates that the results from simply calibrating a group of YDB dates are not substantially different from using Bayesian-modeling for YDB dates.

**Table S26.** Unmodeled, calibrated dates for 23 YDB sites used in Fig S22 above. The date chosen for each site is either from within the YDB layer or represents the temporally closest date to 12,800 ± 150 Cal B.P.

| Calibration (IntCal-13)             | μ     | σ    | 68.2% |       | 95.4% ı | range |
|-------------------------------------|-------|------|-------|-------|---------|-------|
| unmodeled YDB ages and layers       |       |      |       |       |         |       |
| R_Date Lake Cuitzeo: OS-71325       | 12520 | 60   | 12580 | 12425 | 12630   | 12415 |
| R_Date Lake Hind: UCIAMS 29317      | 12605 | 35   | 12635 | 12565 | 12675   | 12545 |
| R_Date Big Eddy: AA-26654           | 12640 | 65   | 12715 | 12595 | 12755   | 12435 |
| R_Date Lingen: Beta-369246          | 12745 | 30   | 12765 | 12705 | 12805   | 12690 |
| R_Date Sheriden Cave: UCI-38249-(C) | 12765 | 30   | 12795 | 12730 | 12825   | 12705 |
| R_Date Murray Spgs: SMU-41          | 12745 | 55   | 12780 | 12690 | 12880   | 12640 |
| R_Date Aalsterhut: GrA-49524        | 12750 | 60   | 12785 | 12690 | 12910   | 12635 |
| R_Date Arlington-BETA-161032        | 12760 | 60   | 12790 | 12700 | 12920   | 12665 |
| R_Date Blackw ater: AA-89168        | 12780 | 65   | 12805 | 12705 | 12935   | 12680 |
| R_Date Topper: AA100294             | 12835 | 80   | 12890 | 12730 | 12995   | 12710 |
| R_Date Lindenmeier: I-141           | 12700 | 140  | 12805 | 12565 | 13000   | 12420 |
| R_Date Abu Hureyra-UCIAMS: 105429   | 12935 | 70   | 13015 | 12860 | 13060   | 12805 |
| R_Date Talega: Beta-196150          | 12930 | 75   | 13020 | 12855 | 13065   | 12795 |
| R_Date Bull Creek: Beta-184854      | 12930 | 80   | 13020 | 12850 | 13075   | 12780 |
| R_Date Indian Creek: Beta-4619      | 12875 | 100  | 12960 | 12740 | 13060   | 12705 |
| R_Date Santa Maira: Beta-75225      | 12905 | 120  | 13015 | 12760 | 13135   | 12695 |
| R_Date Daisy Cave: CAMS-9096        | 13025 | 135  | 13160 | 12865 | 13285   | 12760 |
| R_Date Ommen: UCIAMS 46307          | 13280 | 50   | 13330 | 13235 | 13390   | 13185 |
| R_Date Mucunuque: TO-9278a          | 13285 | 100  | 13395 | 13180 | 13460   | 13095 |
| C_Date Barber Creek: UW 1908        | 12040 | 700  | 12745 | 11340 | 13440   | 10640 |
| C_Date Blackville: LB859            | 12900 | 1190 | 14090 | 11705 | 15275   | 10520 |
| C_Date Lommel: GLL-080712           | 12340 | 900  | 13240 | 11435 | 14135   | 10540 |
| C_Date Melrose: LB860b              | 11640 | 1845 | 13485 | 9790  | 15325   | 7955  |
| YDB: UNMODELED CALIBRATED 14C AGES  |       |      |       |       |         |       |

## **ONSET AGE OF YOUNGER DRYAS CLIMATE EPISODE**

It is widely accepted that the onset of the Younger Dryas climate episode occurred synchronously across the Northern Hemisphere, based on correlations among high-resolution records from the Cariaco Basin (115), Santa Barbara Basin (116, 117, 118), the Greenland ice sheet (119), and elsewhere. Even though the onset of the Younger Dryas episode was abrupt, not every associated climate change proxy responded synchronously across wide areas (120). For example, Lane et al. (121) and Muschitiello and Wohlfarth (122) investigated the Younger Dryas onset in laminated varve sequences, concluding that the pollen response was diachronous across Europe. In another example, Steffensen et al. (119), documented high resolution climatic records for the Greenland (NGRIP) ice core, concentrating on the Younger Dryas episode and its associated climate proxies (Table S27). Those workers placed the abrupt onset of the

Younger Dryas episode at 12,896 ±1.5 years, consistent with the age of the peak in platinum in the GISP2 Greenland ice core (53, 123). The date of the Younger Dryas onset is based on a sharp change in deuterium excess (isotopic fractionation;  $d = \delta D - 8(\delta^{18}O)$ ), a climate proxy that revealed an abrupt shift in atmospheric circulation patterns and changes in related moisture sources that contributed to Greenland's snowpack (119). This change in atmospheric circulation occurred within a span of approximately one year at the Younger Dryas onset (119). This was followed by a succession of changes in Younger Dryas-related proxies that lagged the shift in the deuterium record by up to ≈184 years (Table S27). That temporal lag in climate proxies, including a drop in Greenland temperatures, can probably be attributed to a succession of climatic feedbacks in the atmospheric-oceanic system early in the Younger Dryas episode.

Table S27. Age of onset for the Younger Dryas climate episode, using various proxies. From Steffensen et al. (119).

| Steffensen et al. (2008) |             | Annual ice<br>thickness (λ) | Calcium<br>ions (Ca <sup>2+</sup> ) | Dust<br>content | Stable oxygen isotope (δ <sup>18</sup> Ο) |
|--------------------------|-------------|-----------------------------|-------------------------------------|-----------------|-------------------------------------------|
| Onset age                | 12,896 ±1.5 | 12,787 ±24                  | 12,737 ±8.9                         | 12,735 ±8.9     | 12,712 ±74                                |

## **BAYESIAN SYNCHRONEITY TEST**

**Table S28.** Calculations for testing synchroneity (16, 124). Dates from 30 sites: 1 site with the Greenland platinum record, 6 for Younger Dryas climate onset, and 23 for the YDB (grouped by quality). The Bayesian modeled ages for the 30 records are separated by a minimum of zero (statistically calculated as "-5") years at 68%, 95%, and 99% ("Difference L" row in green). The maximum statistical difference is 130 years at 95% CI. Using the Date code, the length of the overlap among 30 sites was modeled from the Start and End Boundaries (two green highlighted dates), between which all dates fall, producing a modeled age range of 12,820 to 12,740 Cal B.P. at 95% (bottom row highlighted in green). Age model is in **Fig. 9** in the main manuscript.

| Difference Code:                     | Prior a | aes  | Comm  | on | 95.4% | range | 68.2%  | range | 95.4% | range | 99.7% | range | Amodel=188      |
|--------------------------------------|---------|------|-------|----|-------|-------|--------|-------|-------|-------|-------|-------|-----------------|
| modeled YDB ages and layers          | u       | σ    | u     | σ  |       | 90    | 00.270 | 90    |       | 90    | " " " | gc    | Aoverall=190.7  |
| Difference L                         | -       | •    |       | 40 |       |       | -5     | 60    | -5    | 130   | -5    | 215   | 710101411 10011 |
| Boundary End                         |         |      | 12760 |    |       |       |        |       | 12805 |       |       |       |                 |
| AGE OF YOUNGER DRYAS ONSET           |         |      | 12.00 |    |       |       | .2.00  |       | .2000 |       | .2020 | .2000 |                 |
| C Date GRIP GICC05 ice model         | 12845   | 140  | 12785 | 25 | 13125 | 12570 | 12810  | 12760 | 12840 | 12735 | 12885 | 12700 | 127             |
| C Date GISP2 ice model               | 12840   | 260  | 12785 |    |       | 12320 |        | 12760 |       | 12735 |       |       | 137.7           |
| C Date GISP2 platinum peak           | 12840   | 260  | 12785 |    | 13360 |       |        | 12760 | 12835 |       |       | 12695 | 138.1           |
| C Date Cariaco Basin varves          | 12770   | 30   | 12780 |    | 12835 |       |        | 12760 |       |       |       | 12720 | 114.9           |
| R Date Late glacial tree-rings, GER  | 12810   | 50   | 12785 | 20 | 12920 | 12720 |        | 12765 |       | 12745 | 12865 | 12725 | 126.5           |
| C Date Hulu speleothems, CHN         | 12770   | 60   | 12785 |    | 12895 |       |        | 12760 | 12830 | 12735 |       | 12705 | 130.5           |
| C Date Meerfelder Maar               | 12680   | 125  | 12785 | 25 | 12935 | 12425 | 12805  | 12760 | 12835 | 12735 | 12875 | 12695 | 101.4           |
| YDB: HIGH QUALITY                    |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Prior Abu Hureyra UCIAMS 105429      | 12825   | 55   | 12790 | 25 | 12935 | 12705 | 12810  | 12765 | 12840 | 12740 | 12880 | 12715 | 92.1            |
| Prior Arlington_Cyn_YDB_layer        | 12805   | 55   | 12785 | 20 | 12925 | 12695 | 12810  | 12765 | 12835 | 12740 | 12875 | 12715 | 129.1           |
| Prior Aalsterhut YDB layer           | 12780   | 35   | 12780 | 20 | 12845 | 12725 | 12800  | 12760 | 12820 | 12745 | 12845 | 12730 | 106.5           |
| Prior Big_Eddy_YDB_layer             | 12770   | 85   | 12785 | 20 | 12935 | 12580 | 12805  | 12760 | 12835 | 12740 | 12870 | 12705 | 143.4           |
| Prior Bull_Creek_YDB_layer           | 12840   | 75   | 12790 | 20 | 12995 | 12710 | 12810  | 12765 | 12835 | 12740 | 12880 | 12715 | 122.3           |
| Prior Daisy_Cave_YDB_age             | 12730   | 320  | 12785 | 25 | 13320 | 12050 | 12810  | 12760 | 12840 | 12735 | 12885 | 12695 | 141.4           |
| Prior Lake_Hind_YDB_UCIAMS_29317     | 12745   | 180  | 12785 | 25 | 13190 | 12550 | 12810  | 12760 | 12835 | 12730 | 12880 | 12685 | 37.8            |
| Prior Lingen_YDB_Beta_369246         | 12735   | 85   | 12780 | 20 | 12910 | 12520 | 12805  | 12760 | 12820 | 12730 | 12855 | 12700 | 87.7            |
| Prior Sheriden_Cave_YDB_layer        | 12840   | 120  | 12785 | 20 | 13110 | 12625 | 12805  | 12765 | 12835 | 12740 | 12880 | 12710 | 146.1           |
| YDB: MEDIUM QUALITY                  |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Prior Barber_Creek_YDB_age_UW_1908   | 12865   | 535  | 12785 | 25 | 13945 | 11865 | 12810  | 12760 | 12835 | 12735 | 12885 | 12695 | 138.4           |
| Prior Blackwater_YDB_age             | 12775   | 365  | 12785 | 25 | 13510 | 12090 | 12810  | 12760 | 12840 | 12735 | 12885 | 12695 | 135             |
| Prior Indian_Creek_YDB_age           | 12750   | 425  | 12785 | 25 | 13495 | 11805 | 12810  | 12760 | 12840 | 12735 | 12890 | 12700 | 120.8           |
| Prior Lindenmeier_YDB_I_141          | 12775   | 180  | 12785 | 25 | 13195 | 12440 | 12805  | 12760 | 12835 | 12735 | 12880 | 12695 | 131.4           |
| Prior Murray_Springs_YDB_layer       | 12750   | 235  | 12785 | 25 | 13195 | 12255 | 12810  | 12760 | 12840 | 12735 | 12885 | 12700 | 147.4           |
| Prior Santa_Maira_YDB Beta-75225     | 12785   | 295  | 12785 | 25 | 13265 | 12070 | 12805  | 12760 | 12835 | 12735 | 12885 | 12705 | 147.6           |
| Prior Talega_YDB_Beta_196150         | 12860   | 150  | 12790 | 25 | 13075 | 12545 | 12810  | 12765 | 12845 | 12740 | 12890 | 12710 | 62.7            |
| Prior Topper_YDB_AA100294            | 12785   | 185  | 12785 | 20 | 13085 | 12365 | 12805  | 12760 | 12835 | 12735 | 12880 | 12710 | 158.9           |
| YDB: LOWER QUALITY                   |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Prior Blackville_YDB_age_LB859       | 12820   | 1080 | 12785 | 25 | 15015 | 10705 | 12805  | 12760 | 12835 | 12735 | 12885 | 12695 | 142.8           |
| Prior Lake_Cuitzeo_YDB_layer         | 12850   | 570  | 12785 | 25 | 14265 | 12195 | 12805  | 12760 | 12835 | 12730 | 12880 | 12690 | 60.3            |
| Prior Lommel_YDB_age                 | 12735   | 790  | 12785 |    |       | 11325 |        | 12760 |       | 12735 | 12885 | 12695 | 120.4           |
| Prior Melrose_YDB_LB860b             | 12255   | 2405 | 12785 | 25 | 17185 | 7710  | 12810  | 12760 | 12840 | 12735 | 12885 | 12695 | 129.2           |
| Prior Mucunuque_YDB_age              | 12845   | 630  | 12785 | 25 | 13550 | 11335 | 12810  | 12760 | 12840 | 12735 | 12890 | 12700 | 59.7            |
| Prior Ommen_YDB_age                  | 12750   | 560  | 12785 | 25 | 13605 | 11425 | 12810  | 12760 | 12840 | 12735 | 12885 | 12695 | 94.3            |
| Phase                                |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Boundary Start                       |         |      | 12810 | 25 |       |       | 12830  | 12775 | 12865 | 12760 | 12920 | 12745 |                 |
| Sequence YDB SYNCHRONICITY           |         |      |       |    |       |       |        |       |       |       |       |       |                 |
|                                      |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Prior Boundary Start to Boundary End |         |      |       |    |       |       |        |       |       |       |       |       |                 |
| Synchronicity_layer                  |         |      | 12785 | 25 |       |       | 12805  | 12760 | 12835 | 12735 | 12880 | 12700 |                 |

# **METHODS**

**Bayesian analyses.** The OxCal program is used in many disciplines, e.g., by Huysecom et al. (79), who correlated ages of pottery at 26 sites in several countries across northern Africa. OxCal also has been employed to evaluate archaeological site usage in the Middle East (80), Central America (81, 82); and the U.S.A. (125). Bayesian analysis has limited previous usage for dating YDB sites (9, 13, 18, 20, 63). OxCal also has been used to produce age models of spatially scattered historic and prehistoric earthquakes along the San Andreas Fault (126).

For performing Bayesian analyses on a group of <sup>14</sup>C dates from a site, OxCal uses the Markov chain Monte-Carlo (MCMC) algorithm, which can analyze millions of possible age-depth permutations. The following is a simplified description of the process. OxCal calibrates all dates, and then at every available depth, it selects one age from all the possibilities in each probability distribution (127). Next, it combines all the ages for all depths, and this assemblage of

dates becomes one single iteration of an age-depth model. OxCal repeats this process many times, often calculating tens of millions of iterations. Once those calculations are completed, OxCal (i) rejects those iterations that contradict prior information, such as stratigraphic-chronological ordering, (ii) finds the mean of the various iterations, and (iii) calculates the final range of uncertainties. Each date and the overall model are ranked on an Agreement Index, where a value of >60% approximately corresponds to a chi-squared distribution of >95% probability (128).

In OxCal, if the Agreement Index drops below 60% (<95% CI), then that date is a potential outlier, i.e., either too old or too young for the model, and thus, a candidate for rejection. However, Bronk Ramsey (16), stated that the rejection of a date should be based on other criteria, such as the Agreement Index or the entire age model ( $A_{model}$ ). If the model's Agreement Index is above 60% (>95% CI), then no samples need be rejected, even though index values of

individual dates fall below 60%. In some cases, a date is anomalously old and thus, is a candidate for rejection because of the old wood effect. To counter this, OxCal utilizes what is called the "Charcoal Outlier" coding, and because most dates were on charcoal, we used this coding for most sites. After performing outlier testing, we rejected only those dates for which the Agreement Index values for both the individual and the model fell below 60% (<95% CI). All rejected dates are marked in blue in the site tables (SI Appendix—Tables S3-S28).

**Date sources.** All dates and data are available from previously published source papers, as cited in each site's discussion and in Table S1.

**Calculations and coding.** The coding for each site is shown in **SI Appendix—Code.** The general types of OxCal coding used in this contribution include the following:

- 1) CALIBRATION. OxCal's "R\_Date" code calibrates radiocarbon ages using the IntCal13 calibration curve (10) through conversion of radiocarbon years to calendar years. The code "C\_Date" is used for OSL, varve, and ice layer dates that do not need calibration.
- 2) AGE-DEPTH MODELS. For three sites, we used the "P Sequence" code that produces models from groups of dates for which depth relationships are known. In this OxCal model, the rigidity of the curves in the output model is determined by the "k" parameter (127). Higher k values produce a more rigid model that assumes more uniform deposition rates with lower uncertainties; this type of model typically deviates the most from existing dates. For example, if k = 100, then it is assumed that the deposition rate remains essentially unchanged throughout the sequence, an unlikely assumption, causing the resulting plot to be straight with low uncertainties. On the other hand, lower k values produce a model that allows for more variable deposition rates, but with higher uncertainties. The resulting plot is similar to a linear interpolation (regression), except that uncertainties become larger in the undated layers between radiocarbon dates. For the three sites, an inspection of the available radiocarbon dates and depths indicated variable deposition rates, and therefore, we used low k values of 0.03 to 0.1.
- 3) AGE-SEQUENCE MODELS. The "Sequence" code computes age models from groups of dates that are in chronological order, because depth correlations are uncertain or unavailable.
- **4) AGE-PHASE MODELS.** The "Phase" code calculates age models from groups of dates that are in stratigraphic order, but for which precise depth correlations are uncertain or unavailable.
- 5) SYNCHRONEITY TEST. The "Phase" and "Difference" codes were used to compare dates from different sites to assess potential synchroneity (16, 124). Because of uncertainties inherent in all dating techniques, it is simply not possible to "prove" or "disprove" that all YDB dates are from an impact or any other event that occurred instantly. On the other hand, Bayesian analysis can determine whether YDB dates are statistically likely to be synchronous or diachronous. To do so, we placed all dates into a single group, called a Phase, and then used the Difference command to determine the span of the phase in years. If the minimum span was greater than zero, then the dates are diachronous. If the minimum span included zero years, then the dates could be isochronous.
- **6) OUTLIER CODE.** Most dates, whether radiocarbon and OSL, are older than their parent stratum (16). On the

other hand, some datable material may move downward through redeposition, making a stratum appear younger than its true age. To account for these effects, an Outlier Model was used for all sites. For sites with only charcoal dates, we named the code "Charcoal." Where dates were acquired on charcoal and sedimentary carbon, we used the same code, but named the model "Carbon." When OSL dates were used or radiocarbon dates were acquired on a mix of charcoal, wood, sedimentary carbon, and bone, we used the same code, but named it "General."

OxCal's outlier code has several variables, and their selection was based on balancing several objectives: achieving the highest model Agreement Index; producing the lowest age uncertainties; maintaining consistency with existing unmodeled ages; and rejecting the fewest outliers, based on the assumption that accepting more dates is preferable. To test the robustness of the variable selection, we (i) compiled all calibrated <sup>14</sup>C dates (IntCal13) acquired directly on the YDB layer; (ii) added the dates that were stratigraphically closest to the proxy-rich YDB layer for those sites with no direct <sup>14</sup>C dates; and (iii) used all YDB OSL dates as published. The results in Fig. S22 and Table S27 show that 91% of dates (39 of 43) share a common age range of 12,840 to 12,805 Cal B.P. at 99% Cl and 81% of dates (35 of 43) overlap within the 95% CI range. Compared to the Combine test above with an age range of 12,815 to 12,755 Cal B.P. at 95% CI, the results indicate that Bayesian modeling does not negatively affect a comparison of the 30 YDB records.

(7) DATE CODE. When modeling sites, another factor was considered, the stratigraphic thickness of the YDB samples, which varied widely. Typically, stratigraphic intervals across the YDB were less than 5-cm thick, but sometimes they were thicker, mainly because we were unable to sample the sites directly, and instead, acquired archival samples from independent investigators. These thicker samples represent a temporal span that was short if deposition was rapid, but long if deposition was slow. Thus, it was not possible to determine if the entire thick sample represented the YDB layer or whether the YDB occurred only across a smaller percentage of the width. Consequently, a single calibrated radiocarbon date acquired from within that thick sample may or may not adequately represent the age of the YDB - the available date might be older or younger. This means that all we can conclude is that the age of the YDB falls somewhere within the age range of the entire sample, which must be calculated.

To compensate for sampling difference, we used the "Date" coding in two ways. For sites such as Arlington Canyon and Aalsterhut, there were multiple varying dates within the YDB layer. In those cases, we chose not to use the Combine code because that would have produced an age with a misleadingly low uncertainty. Instead, we inserted Boundary codes for "YDB\_base" and "YDB\_top," and after obtaining those values, we performed a second calculation using the modeled Boundary age data from previously calculated files called "priors." This calculation produces a modeled age for the entire stratum that contains the YDB layer. It is possible to incorporate such coding into the original age modeling, but for simplicity and clarity, we chose to perform the calculations in two separate steps, as shown in SI Appendix—Code.

#### **REFERENCES**

- 01. Telford RJ, Heegaard E, Birks HJB (2004a) The intercept is a poor estimate of a calibrated radiocarbon age. *The Holocene* 14(2):296–298.
- 02. Telford RJ, Heegaard E, Birks HJB (2004b) All age-depth models are wrong: but how badly? *Quaternary Science Reviews* 23 (2004) 1–5.
- 03. Andressen CS, et al. (2000) What do  $\delta^{14}$ C changes across the Gerzensee oscillation/GI-1b event imply for deglacial oscillations? J Quat Sci 15(3):203–214.
- 04. Firestone RB, et al. (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. *Proc Natl Acad Sci USA* 104(41):16016–16021.
- Overholt AC, Melott AL (2013) Cosmogenic nuclide enhancement via deposition from long-period comets as a test of the Younger Dryas impact hypothesis. Earth Planet Sci Lett 377–378:55–61.
- 06. Philippsen B (2013) The freshwater reservoir effect in radiocarbon dating, Heritage Sci 1:24.
- 07. Mahaney WC, Terasmae J (1988) Notes on radiocarbon dated Holocene soils in Rouge River basin, south-central Ontario. *Acta Geologica Hungarica* 31(1–2):153–163.
- 08. Blaauw M., et al. (2011) High-resolution <sup>14</sup>C dating of a 25,000-year lake-sediment record from equatorial East Africa. *Quaternary Science Reviews*, 30, 3043-3059.
- 09. Kennett DJ, et al. (2008) Wildfire and abrupt ecosystem disruption on California's northern channel islands at the Ållerød–Younger Dryas boundary (13.0–12.9 ka). Quat Sci Rev 27(27–28):2530–2545.
- Reimer PJ, et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 Years Cal B.P. Radiocarbon 55(4):1869–1887.
- 11. Sarnthein M, Grootes PM, Kennett JP, Nadeau M-J (2007) 14C reservoir ages show deglacial changes in ocean currents and carbon cycle, in Ocean Circulation: Mechanisms and Impacts Past and Future Changes of Meridional Overturning (eds A. Schmittner, J. C. H. Chiang and S. R. Hemming), American Geophysical Union, Washington, D.C. doi: 10.1029/173GM13
- 12. Sarnthein M, Balmer S, Grootes PM, Mudelsee M (2015) Planktic and Benthic 14C Reservoir Ages for Three Ocean Basins, Calibrated by a Suite of 14C Plateaus in the Glacial-to-Deglacial Suigetsu Atmospheric 14C Record. Radiocarbon, 57, 1, 129-151.
- 13. Meltzer DJ, Holliday VT, Cannon MD, Miller DS (2014) Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. *Proc Natl Acad Sci USA* 111(21):E2162–E2171.
- Casson MA and Feathers JK. (2001) The Application of Luminescence Dating to Cultural Resource Management. Society for American Archaeology, New Orleans, LA.
- Erlandson JM, Braje TJ, Graham MH (2008) How old is MVII?: seaweeds, shorelines, and chronology at Monte Verde, Chile. J Island and Coastal Archaeol 3(2):277–281.
- 16. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337-360.
- 17. Bunch TE, et al. (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. *Proc Natl Acad Sci USA* 109(28):11066–11067.
- 18. van Hoesel A, et al. (2012) Nanodiamonds and wildfire evidence in the Usselo Horizon postdate the Allerød-Younger Dryas boundary. *Proc Natl Acad Sci USA* 109(2):7648–7653.
- 19. Wittke JH, et al. (2013) Evidence for deposition of 10 million tonnes of cosmic impact spherules across four continents 12,800 years ago. *Proc Natl Acad Sci USA* 110(23):E2088–E2097.
- 20. Kinzie CR, et al. (2014) Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 Cal B.P. *J Geol* 122(5):475–506.
- Tankersley KB, Ford K, McDonald G, Genheimer R, Hendricks R (1997a) Late Pleistocene archaeology of Sheriden Cave, Wyandot County, Ohio. Curr Res Pleist 14:81–83.
- 22. Tankersley KB, Sheriden B (1997b) A Clovis cave site in eastern North America. Geoarch 12(6):713-724.
- 23. Tankersley KB, Landefeld CS (1998) Geochronology of Sheriden Cave, Ohio: the 1997 field season. Curr Res Pleist 15:136–138.
- 24. Tankersley KB, Redmond BG (1999a) Fluoride/radiocarbon dating of late Pleistocene bone from Sheriden Cave, Ohio. *Curr Res Pleist* 16:107–108.
- Tankersley KB, Redmond BG (1999b) Radiocarbon dating of a projectile point from Sheriden Cave, Ohio. Curr Res Pleist 16:76–77.
- 26. Tankersley KB, Redmond BG, Grove T (2001) Radiocarbon dates associated with a single-beveled bone projectile point from Sheriden Cave, Ohio. *Curr Res Pleist* 18:61–63.
- Tankersley KB, Sheriden B (1999c) A stratified Pleistocene-Holocene cave site in the Great Lakes region of North America.
   Zooarchaeology of the Pleistocene/Holocene Boundary, ed Driver JC (Archaeopress, Oxford), BAR International Series 800, pp. 67–75
- 28. Redmond BG, Tankersley KB (2005) Evidence of Early Paleoindian bone modification and use at the Sheriden Cave Site (33WY252), Wyandot County, Ohio. *Amer Antig* 70(3):503–526.
- 29. Redmond BG, Tankersley KB. (2012) Species response to the theorized Clovis Comet impact at Sheriden Cave, Ohio. Curr Res Pleist 28:141–143.
- 30. Mahaney WC, et al. (2008) Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. *Geomorph* 96(1):199–211.
- 31. Mahaney WC, et al. (2010) Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: the black mat enigma. *Geomorph* 116(1–2):48–57.
- 32. Mahaney WC, et al. (2011a) Fired glaciofluvial sediment in the northwestern Andes: biotic aspects of the Black Mat. Sedimentary Geol 237(1–2):73–83.
- 33. Mahaney WC, et al. (2011b) Notes on the black mat sediment, Mucuñuque catchment, northern Mérida Andes, Venezuela. *J Adv Microscop Res* 6(3):177–185.
- 34. Mahaney WC, Keiser L (2012) Weathering rinds—unlikely host clasts for an impact-induced event. Geomorph 184:74–83.
- 35. Mahaney WC, Krinsley D, Kalm V (2010b) Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: correlation with experimentally heated quartz and feldspar. *Sedimentary Geol* 231(1–2):31–40.

- 36. Mahaney WC, Krinsley D (2012) Extreme heating events and effects in the natural environment: implications for environmental geomorphology. *Geomorph* 139–140:348–35937.
- 37. Israde-Alcántara I, et al. (2012) Evidence from Central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. *Proc Natl Acad Sci USA* 109(13):E738–E747.
- 38. Kurbatov AV, et al. (2011) Discovery of a nanodiamond-rich layer in the Greenland ice sheet. J Glaciol 56:749–759.
- 39. Mahaney WC, et al. (2013) Weathering rinds as mirror images of palaeosols: examples from the western Alps with correlation to Antarctica and Mars. *J Geol Soc* 170(5):833–847.
- 40. LeCompte MA, et al. (2012) Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. *Proc Natl Acad Sci USA* 109(44):E2960–E2969.
- 41. Firestone RB (2009) The case for the Younger Dryas extraterrestrial impact event: mammoth, megafauna, and Clovis extinction, 12.900 years ago. *J Cosmol* 2:256–285.
- 42. Firestone RB, et al. (2010) Analysis of the Younger Dryas impact layer. Eng Techn 1(3):30-62.
- 43. Firestone RB (2014) Observation of 23 supernovae that exploded <300 pc from earth during the past 300 kyr. *Astrophys J* 789(29):1–11.
- 44. Kennett DJ, et al. (2009a) Nanodiamonds in the Younger Dryas boundary sediment layer. Science 323(5910):94.
- 45. Kennett DJ, et al. (2009b) Shock-synthesized hexagonal diamonds in Younger Dryas boundary Sediments. *Proc Natl Acad Sci USA* 106 (31):12623–12628.
- 46. Haynes CV, Jr, et al. (2010) The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. *Proc Natl Acad Sci USA* 107(9):4010–4015.
- 47. Fayek M, Anovitz LM, Allard LF, Hull S (2012) Framboidal iron oxide: chondrite-like material from the black mat, Murray Springs, Arizona. *Earth Planet Sci Lett* 319:251–258.
- 48. Baker DW, Miranda PJ, Gibbs KE (2008) Montana Evidence for Extra-Terrestrial Impact Event That Caused Ice-Age Mammal Die-Off. *Amer Geophys Union Abstract* P41A–05.
- 49. Tian H, Schryvers D, Claeys P (2011) Nanodiamonds do not provide unique evidence for a Younger Dryas impact. *Proc Natl Acad Sci USA* 108(1):40–44.
- 50. Bement LC, Madden AS, Carter BJ, Simms AR, Swindle AL, Alexander HM, Fine S, Benamara M (2014) Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull creek, Oklahoma Panhandle, USA. *Proc Natl Acad Sci USA* 111(5):1726–1731.
- 51. Andronikov AV, Lauretta DS, Andronikva IE, Maxwell RJ (2011) On the possibility of a late Pleistocene, extraterrestrial impact: LA-ICP-MS analysis of the Black Mat and Usselo Horizon samples. Abstract for a poster presented at the 74<sup>th</sup> Meteorit Soc Meeting, London UK.
- 52. Marshall W, Head K, Clough R, Fisher A (2011) Exceptional iridium concentrations found at the Allerød-Younger Dryas transition in sediments from Bodmin Moor in southwest England. Paper #2641, XVIII INQUA-Congress, Bern, Switzerland.
- 53. Petaev MI, Huang S, Jacobsen SB, Zindler A (2013) Large Pt anomaly in the GISP2 ice core points to a cataclysm at the onset of Younger Dryas. *Proc Natl Acad Sci USA* 110(32):12917–12920.
- 54. Beets C, Sharma M, Kasse K, Bohncke S (2008) Search for Extraterrestrial Osmium at the Allerod Younger Dryas Boundary. Amer Geophys Union Abstract V53A–2150.
- 55. Sharma M, Chen C, Jackson BP, Abouchami W (2009) High resolution osmium isotopes in deep-sea ferromanganese crusts reveal a large meteorite impact in the Central Pacific at 12 ± 4 ka. *Amer Geophys Union Abstract* PP33B-06.
- 56. Wu Y, Sharma M, LeCompte MA, Demitroff M, Landis JD (2013) Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. *Proc Natl Acad Sci USA* 110(38):E3557–E3566.
- 57. Melott A, Thomas BC, Dreschhoff G, Johnson CK (2009) Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event. *Geol* 38(4):355–358.
- 58. Surovell TA, et al. (2009) An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. *Proc Natl Acad Sci USA* 104(43):18155–18158.
- 59. Pinter N, et al. (2011) The Younger Dryas impact hypothesis: a requiem. Earth Sci Rev 106:247-264.
- 60. Pigati JS, et al. (2012) Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis. *Proc Natl Acad Sci USA* 109(19):7208–7212.
- 61. Boslough MB, et al. (2012) Arguments and evidence against a Younger Dryas impact event. *Climates, Landscapes, and Civilizations*, eds Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD (Amer Geophys Union, Washington, DC), Geophys Monograph Ser Vol 198, pp 13–26.
- 62. Scott AC, et al. (2010) Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas "impact layer." *Geophys Res Lett* 37(14):L14302.
- 63. van Hoesel A, et al. (2014) The Younger Dryas impact hypothesis: a critical review. Quat Sci Rev 83(1):95–114.
- 64. Daulton T, Pinter N, Scott A (2010) No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event. *Proc Natl Acad Sci USA* 107(37):16043–16047.
- 65. Paquay FS, Goderis S, Ravizza G, Vanhaeck F, Boyd M, Surovell TA, Holliday VT, et al. (2009) Absence of geochemical evidence for an impact event at the Bølling–Allerød/Younger Dryas transition. *Proc Natl Acad Sci USA* 106(51):21505–21510.
- 66. Moore AMT, Hillman GC, Legge AJ (2000) Village on the Euphrates (Oxford Univ Press, New York).
- 67. Moore AMT, Kennett DJ. (2013) Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. *Eurasian Prehistory*, 10, 1–2, 57–66.
- 68. Hillman G, Hedges R, Moore A, Colledge S, Pettitt P (2001) New evidence of late glacial cereal cultivation at Abu Hureyra on the Euphrates. *The Holocene* 11(4):383–393.
- 69. Hajic ER, Mandel RD, Ray JH, Lopinot NH (2007) Geoarchaeology of stratified Paleoindian deposits at the Big Eddy site, southwest Missouri, U.S.A. *Geoarch* 22(8):891–934.
- 70. Lopinot NH, Ray JH, Conner MD (1998) *The 1997 Excavations at the Big Eddy Site (23CE426) in Southwest Missouri* (Special Publication 2, Center for Archaeological Research, Southwest Missouri State University, Springfield, MO).
- 71. Lopinot NH, Ray JH, Conner MD (2000) *The 1999 Excavations at the Big Eddy Site (23CE426)* (Special Publication 3, Center for Archaeological Research. Southwest Missouri State University, Springfield, MO).
- 72. Bement LC, Carter BJ, Varney RA, Cummings LS, Sudbury JB (2007) Paleo-environmental reconstruction and bio-stratigraphy, Oklahoma Panhandle, USA. *Quat Internatl* 169–170:39–50.

- 73. Conley TO (2010) Buried soils of late Pleistocene to Holocene ages accented in stacked soil sequences from the southern High Plains of the Oklahoma Panhandle. MS thesis (Oklahoma State University, Stillwater, OK).
- 74. Erlandson JM, et al. (1996) An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. *Radiocarbon* 38(2):355–373.
- 75. Haynes CV, Jr, Huckell BB (2007) Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona (Univ of Arizona Press, Tucson).
- 76. Haynes CV, Jr (2008) Younger Dryas "black mats" and the Rancholabrean termination in North America. *Proc Natl Acad Sci USA* 105(18):6520–6525.
- 77. Haynes CV, Jr. (1998) Arizona's Famous Clovis Sites Could be Displayed for Public. Mammoth Trumpet 13(2), p. 3.
- 78. Anderson DG, Goodyear AC, Kennett J, West A. (2011) Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quatern. Int. 242 570-583.
- Huysecom E, et al. (2009) The emergence of pottery in Africa during the 10th millennium cal BC: new evidence from Ounjougou (Mali). Antiquity 83(322):905–917.
- 80. Finkelstein I and Piasetzky E (2010) Radiocarbon dating the Iron Age in the Levant: a Bayesian model for six ceramic phases and six transitions. *Antiquity* 84(324):374–385.
- 81. Bachand BR (2008) Bayesian refinement of a stratified sequence of radiometric dates from Punta de Chimino, Guatemala. *Radiocarbon* 50(1):19–51.
- 82. Kennett DJ, et al. (2013) Correlating the Ancient Maya and Modern European Calendars with High-Precision AMS <sup>14</sup>C Dating. *Sci Rep* 3(1597):1–5.
- 83. Haynes V., Haas H. (1974) Southern Methodist University, Radiocarbon Date List I. Radiocarbon, 16, 3, 368-380.
- 84. Waters MR, Stafford TW, Jr, Redmond BG, Tankersley KB (2009) The age of the Paleoindian assemblage at Sheriden Cave, Ohio. *Amer Antig* 74(1):107–111.
- 85. McDonald HG (1994) Late Pleistocene Vertebrate Fauna of Ohio: Coinhabitants with Ohio's Paleoindians. *The First Discovery of America*, ed Dancey WS (Ohio Archeological Council, Columbus) pp 23–42.
- 86. Daniel IR, Jr (2002) Stratified early-middle Holocene remains in the North Carolina Coastal Plain. Southeast Archaeol Conf Spec Pub 7:6–11.
- 87. Daniel IR, Jr, Seramur KC, Potts TL, Jorgenson MW (2008) Searching a sand dune: shovel testing the Barber Creek site. *N Carolina Archaeol* 57:50–77.
- 88. Daniel IR, Jr, Moore CR (2011) Current research into the Paleoindian and Archaic periods in the North Carolina Coastal Plain. *The Archaeology of North Carolina: Three Archaeological Symposia*, eds Ewen CR, Whyte T, Davis RPS, Jr (North Carolina Archaeological Council Publication No 30), pp 93–117.
- 89. McFadden P (2009) Geoarchaeological Investigations of dune formation and artifact deposition at Barber Creek (31PT259). MA thesis (East Carolina University, Greenville, NC).
- 90. Moore CR (2009) Late Quaternary geoarchaeology and geochronology of stratified eolian deposits, Tar River, North Carolina. PhD dissertation (East Carolina University, Greenville NC).
- 91. Moore CR, Daniel IR, Jr (2011) Geoarchaeological investigations of stratified sand ridges along the Tar River, North Carolina. *North Carolina Archaeology: Three Archaeological Symposia*, eds Ewen CR, Whyte T, Davis RPS, Jr. (North Carolina Archaeological Council Publication 30), pp 1–42.
- 92. Choate BC (2011) Stratigraphic investigations at Barber Creek (31PT259): reconstructing the culture-history of a multicomponent site in the North Carolina Coastal Plain. MA thesis (East Carolina University, Greenville, NC).
- 93. Haynes CV, Jr (1995) Geochronology of paleoenvironmental change, Clovis type site, Blackwater Draw, New Mexico. *Geoarch* 10(5):317–388.
- 94. Kilby D, Crawford G. (2013) Current Research and Investigations at Blackwater Draw, NM. NewsMAC: Newsletter of the New Mexico Archaeological Council 2013-2.
- 95. Davis LB, Greiser ST (1992) Indian Creek Paleoindians: early occupation of the Elkhorn Mountains' southeast flank, west-central Montana. *Ice Age Hunters of the Rockies*, eds Stanford DJ, Day JS (Univ Press of Colorado, Boulder, CO), pp. 225–283.
- 96. Running GL IV, Havholm KG, Boyd M, Wiseman DJ (2002) Holocene stratigraphy and geomorphology of Flintstone Hill, Lauder Sandhills, Glacial Lake Hind Basin, southwestern Manitoba. *Géographie Physique et Quaternaire* 56(2–3):291–303.
- 97. Boyd M, Running GL, Havholm K (2003) Paleoecology and Geochronology of Glacial Lake Hind During the Pleistocene-Holocene Transition: A Context for Folsom Surface Finds on the Canadian Prairies. *Geoarchaeology* 18(6):583-607.
- 98. Wilmsen EN, Roberts FHH, Jr (1978) *Lindenmeier, 1934–1974: Concluding Report on Investigations*. Contributions to Anthropology 24, Smithsonian Institution Press, Washington, D.C.
- 99. Haynes CV, Jr, Beukens RP, Jull AJT, Davis OK (1992) New radiocarbon dates from some old Folsom sites: accelerator technology. *Ice Age Hunters of the Rockies*. eds Stanford DJ, Day JS (Univ Press of Colorado, Boulder, CO), pp 83–100.
- 100. Hoek WZ (1997) Late-glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Veget Hist Archaeobot 6(4):197–213.
- 101. Vanmontfort B, Van Gils M, Paulissen E, Bastiaens J, Meirsman E, De Bie M (2010) Landscape evolution and hunter-gatherer occupation in the Liereman landscape. *J Archaeol Low Countries* 2(2):31–51.
- 102. Derese C, Vandenberghe DAG, Van Gils M, Mees F, Paulissen E, Van den haute P (2012) Final Palaeolithic settlements of the Campine region (NE Belgium) in their environmental context: optical age constraints. *Quat Internatl* 251:7–21.
- 103. Aura JE, Carrion Y, Estrelles E, and Jorda JP (2005) Plant economy of hunter-gatherer groups at the end of the last Ice Age: plant macroremains from the cave of Santa Maira (Alacant, Spain) ca. 12000—9000 B.P. Veget Hist Archaeobot 14(4):542–550.
- 104. Bergin KA, et al. (2011) The Archaeology of the Talega Site (CA-ORA-907), Orange County, California: Perspective on the Prehistory of Southern California (Viejo California Associates, Mission Viejo, CA).
- 105. Waters MR, Forman S, Stafford TW, Jr, Foss J (2009a) Geoarchaeological investigations at the Topper and Big Pine Tree sites, Allendale County, South Carolina. *J Archaeol Sci* 36(7):1300–1311.
- 106. Blaauw M, Holliday VT, Gill JL, Nicoll K (2012) Age models and the Younger Dryas impact hypothesis. Proc Natl Acad Sci USA 109(34):E2240.
- 107. Israde-Alcántara I, et al. (2010) Evolución paleolimnologica del Lago Cuitzeo, Michoacán, durante el Pleistoceno-Holoceno (Paleolimnologic evolution of Lake Cuitzeo, Michoacán, during the Pleistocene-Holocene). B Soc Geol Mex 62:345–357.

- 108. Hooghiemstra H, Cleef AM, Noldus CW, Kappelle M (1992) Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area (Cordillera de Talamanca, Costa Rica). *J Quaternary Sci* 7:205–225.
- 109. Bush MB, et al. (1992) A 14,300-yr paleoecological profile of a lowland tropical lake in Panama. Ecol Monogr 62:251–275.
- 110. Correa-Metrio A (2010) Cimate and vegetation of the Yucatan Peninsula during the Late Pleistocene. PhD dissertation (Florida Institute of Technology, Melbourne FL), p 194.
- 111. Hodell DA, et al. (2008) An 85-ka record of climate change in lowland Central America. Quat Sci Rev 27:1152–1165.
- 112. Haug GH, et al. (2001) Southward Migration of the Intertropical Convergence Zone through the Holocene. Science 293, 1304-1308.
- 113. Piper DZ, Dean WE (2002) Trace-Element Deposition in the Cariaco Basin, Venezuela Shelf, under Sulfate-Reducing Conditions: A History of the Local Hydrography and Global Climate, 20 ka to the Present (USGS, Washington, DC), Prof. paper 1670.
- 114. Colgan PM, Mickelson DM, Cutler PM (2003) Ice-marginal terrestrial landsystems: southern Laurentide ice sheet. *Glacial Landsystems*, eds Evans DA, Rea BR (Edwin Arnold, London), pp 111–142.
- 115. Haug GH, Hughen KA, Peterson LC, Sigman DM, Röhl U (2001) Cariaco Basin Trace Metal Data (NOAA/NGDC), IGBP PAGES/World Data Center A for Paleoclimatology Data Contribution Series #2001-12628.
- 116. Kennett JP, Ingram BL (1995) A 20,000 year record of ocean circulation and climate change from the Santa Barbara Basin. *Nature* 377:510-514.
- 117. Behl RJ, Kennett JP (1996) Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. *Nature* 379: 243-246
- 118. Hendy IL, Kennett JP (1999) Latest Quaternary North Pacific surface-water responses imply atmosphere-driven climate instability. *Geology* 27:291-294.
- 119. Steffensen JP, et al. (2008) High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science, 321: 650-1.
- 120. Blaauw M, Mauquoy D. (2012) Signal and variability within a Holocene peat bog—chronological uncertainties of pollen, macrofossil and fungal proxies. *Review of Palaeobotany and Palynology* 186:5–15.
- 121. Lane CS, Brauer A, Blockley SPE, Dulski P. (2013) Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. First published online October 30, 2013, doi: 10.1130/G34867.1
- 122. Muschitiello F, and Wohlfarth B. (2015) Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat Sci Rev. 109, 49–56.
- 123. Meese DA, et al. (1997) The Greenland Ice Sheet Project 2 depth-age scale: methods and results. *J Geophys Res* 102(C12):26411–26423.
- 124. Parnell AC, et al. (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. *Quat Sci Rev.* 27:19-20, 1872-1885.
- 125. Steponaitis VC, Scarry CM. (2015) New directions in Moundville research. *Rethinking Moundville and its Hinterland*, ed Steponaitis VC, Scarry CM (University Press of Florida, Gainesville, FL), in press.
- 126. Lienkaemper JL, Williams PL, Guilderson TP (2010) Evidence for a twelfth large earthquake on the southern Hayward Fault in the past 1900 years. *Bull Seismol Soc Amer* 100(5A):2024–2034.
- 127. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55(2-3):720-730.
- 128. Ward GK, Wilson SR (1978) Procedures for comparing and combining radiocarbon age determinations: a critique. *Archaeometry* 20(1):19–31.

## **BAYESIAN CODE for OxCAL**

};

For the code for individual sites shown below, OxCal's Options generally were as follows: Options() Resolution=5; Curve="IntCal13": Cubic=TRUE: RawData=FALSE; UseF14C=FALSE: BCAD=FALSE: PlusMinus=FALSE: Intercept=FALSE: Floruit=FALSE; SD1=TRUE; SD2=TRUE: SD3=FALSE; ConvergenceData=TRUE; UniformSpanPrior=TRUE; klterations=100:

Occasionally, we used the "General" outlier code, as follows:

Outlier Model("General", T(5), U(0,3), "t");

For most sites, we used the outlier model "Charcoal," on the assumption that all wood burned at a site is, by definition, older than the age of the fire. Typical code is as follows:

Outlier Model("Carbon", Exp(1,-10,0), U(0,4), "t");

We used the same code for those sites where dates were acquired on charcoal and sedimentary carbon, except that we named the model "Carbon." When dates were acquired on charcoal, wood, sedimentary carbon, and bone, we used the same code, but named it "Multi."

The outlier code has multiple variables for specifying the constraints for accepting or rejecting outliers, e.g., "Exp(1,-10,n)." For the first two variables, we always used "1" and "-10. For the third exponential variable, "n," we used values ranging from 0 to 10 based on the degree of variation in dates, whenever there were multiple radiocarbon date reversals in a stratigraphic sequence. Usually, that variable was tuned to minimize rejection of radiocarbon dates, based on the assumption that using more radiocarbon dates is preferable to using fewer ones.

# The individual code is provided below for each site in alphabetical order:

# AALSTERHUT, NETHERLANDS.

```
AGE-SEQUENCE MODEL:
```

```
Plot()
Outlier Model("Charcoal", Exp(1,-10,3), U(0,3), "t");
Sequence("Aalsterhut")
  Boundary();
  Phase("ND-rich layer")
R Date("GrA-49524",11020,75){Outlier("Charcoal",1);};
R Date("GrA-49509",10865,55){Outlier("Charcoal",1);};
R Date("GrA-49515",10840,75){Outlier("Charcoal",1);};
  Boundary();
  Phase("Above NDs")
R Date("GrA-49575",10900,50){Outlier("Charcoal",1);};
R Date("GrA-49569",10895,45){Outlier("Charcoal",1);};
R Date("GrA-49514".10880.110){Outlier("Charcoal".1):}:
R Date("GrA-49527".10960.60){Outlier("Charcoal".1):}:
R Date("GrA-49507",10920,50){Outlier("Charcoal",1);};
R Date("GrA-49573",10860,45){Outlier("Charcoal",1);};
R Date("GrA-49574",10845,45){Outlier("Charcoal",1);};
};
  Boundary();
  Phase("Later fire")
```

```
R Date("GrA-49516",10765,50){Outlier("Charcoal",1);};
R Date("GrA-49529",10755,55){Outlier("Charcoal",1);};
R_Date("GrA-49521 ",10765,50){Outlier("Charcoal",1);};
R_Date("GrA-49570 ",10735,45){Outlier("Charcoal",1);};
   Boundary("");
};
};
ABU HUREYRA
AGE-SEQUENCE MODEL
Plot()
 {
Outlier_Model("Multi", Exp(1,-10,1), U(0,3), "t");
Sequence("Abu Hureyra")
   Boundary("Transition");
   Phase("Start Phase 1")
R Date("OxA-883",11450, 300){Outlier("Multi",1);};
R_Date("OxA-468",11090, 150){Outlier("Multi",1);};
R_Date("OxA-387",11070, 160){Outlier("Multi",1);};
R_Date("OxA-469",10920, 140){Outlier("Multi",1);};
R_Date("OxA-172",10900, 200){Outlier("Multi",1);};
R_Date("OxA-470",10820, 160){Outlier("Multi",1);};
};
   Boundary("Transition");
   Phase("Transition Phase 1-2; YDB")
R_Date("UCIAMS-105429",11070, 40){Outlier("Multi",1);};
};
   Boundary("Top of YDB");
   Phase("Start Phase 2")
R Date("BM-1718R".11140. 140){Outlier("Multi".1):}:
R Date("OxA-430".11020. 150){Outlier("Multi".1):}:
R Date("OxA-6685",10930, 120){Outlier("Multi",1);};
R Date("OxA-474",10930, 150){Outlier("Multi",1);};
R_Date("OxA-472",10750, 170){Outlier("Multi",1);};
R_Date("OxA-431",10680, 150){Outlier("Multi",1);};
R_Date("OxA-171",10600, 200){Outlier("Multi",1);};
R_Date("OxA-434",10490, 150){Outlier("Multi",1);};
R_Date("OxA-435",10450, 180){Outlier("Multi",1);};
R Date("OxA-397",10420, 140){Outlier("Multi",1);};
};
   Boundary("Transition");
   Phase("Start Phase 3")
\label{eq:conditional_condition} $$R_Date("OxA-386",10800, 160){Outlier("Multi",1);}; $$R_Date("OxA-471",10620, 150){Outlier("Multi",1);}; $$
R Date("OxA-8719",10610, 100){Outlier("Multi",1);};
R Date("OxA-170",10600, 200){Outlier("Multi",1);};
   Boundary("Transition");
   Phase("Late Phase 3")
R Date("OxA-408",10250, 160){Outlier("Multi",1);};
R Date("OxA-407",10050, 180){Outlier("Multi",1);};
R_Date("OxA-473",10000, 170){Outlier("Multi",1);};
   Boundary(""):
};
};
```

# ARLINGTON CANYON AGE-SEQUENCE MODEL

```
Plot()
Outlier Model("Charcoal", Exp(1,-10,0), U(0,3), "t");
Sequence("Arlington Canyon")
Boundary("");
Phase("Proxy-rich Phase")
R Date("UCIAMS-36304",11020,25){Outlier("Charcoal",1);};
R Date("UCIAMS-36305",11235,25){Outlier("Charcoal",1);};
R Date("UCIAMS-36306",11375,25){Outlier("Charcoal",1);};
R Date("BETA-161032",10860,70){Outlier("Charcoal",1);};
R Date("UCIAMS-36959",11075,30){Outlier("Charcoal",1);};
R Date("UCIAMS-36962",11110,35){Outlier("Charcoal",1);};
R Date("UCIAMS-36960",11185,30){Outlier("Charcoal",1);};
R_Date("UCIAMS-36961",11440,90){Outlier("Charcoal",1);};
R_Date("UCIAMS-36307",11070,25){Outlier("Charcoal",1);};
R_Date("UCIAMS-42816",11095,25){Outlier("Charcoal",1);};
R_Date("UCIAMS-36308",11095,25){Outlier("Charcoal",1);};
R_Date("UCIAMS-47239",11105,30){Outlier("Charcoal",1);};
Boundary("Transition");
Phase("Upper Phase")
R Date("UCIAMS-47238",11105,30){Outlier("Charcoal",1);};
R_Date("UCIAMS-47236",11095,40){Outlier("Charcoal",1);};
R_Date("UCIAMS-47236",12095,40){Outlier("Charcoal",1);};
R Date("UCIAMS-47235",11040,30){Outlier("Charcoal",1);};
Boundary();
 };
};
BARBER CREEK
AGE-SEQUENCE MODEL
Plot()
Sequence("Barber Creek")
  Boundary("");
  Phase("Allluvial Phase")
  Date("FS2511",calBP(2009-16800), 1900);
C_Date("UW 1909",calBP(2009-14500), 1000);
  Boundary();
  Phase("YDB Layer")
C Date("UW 1908",calBP(2009-12100), 700);
};
  Boundary("");
  Phase("Eolian Phase")
R Date("Beta-188956",10500, 50);
R Date("Beta-166238",9860, 60);
R_Date("Beta-166237",9280, 60);
R_Date("Beta-188955",8950, 40);
R_Date("Beta-150188",8940, 70);
C Date("FS2476",calBP(2009-9740), 590);
C Date("UW 1907",calBP(2009-9200), 700);
C Date("UW1963".calBP(2009-9100), 700);
R Date("Beta-166239",8440, 50):
 };
  Boundary("");
 };
};
```

```
BIG EDDY
```

```
AGE-DEPTH MODEL
Plot()
Outlier_Model("Charcoal", Exp(1,-10,0.5), U(0,3), "t");
P_Sequence("Big Eddy",0.03,0.01)
Boundary();
R Date("AA-27484",12700,180){z=396.0;Outlier("Charcoal",1);};
R Date("AA-34590".12590.85){z=386.0:Outlier("Charcoal".1):}:
R Date("AA-27483".11910.440){z=384.0:Outlier("Charcoal".1):}:
        R Date("AA-34589",11375,80){z=383.0;Outlier();color="red";};
R Date("AA-34588",12250,100){z=375.0;Outlier("Charcoal",1);};
R Date("AA-72613",11960,270){z=373.0;Outlier("Charcoal",1);};
R_Date("AA-34587",11930,110){z=364.0;Outlier("Charcoal",1);};
R_Date("AA-34586",12320,130){z=358.0;Outlier("Charcoal",1);};
R Date("AA-26655",10940,80){z=347.0;Outlier("Charcoal",1);};
R Date("AA-72608",12450,300){z=347.0;Outlier("Charcoal",1);};
R Date("AA-27482",11190,75){z=338.0;Outlier("Charcoal",1);};
Date("Base of YDB"){z=335.0;Outlier("Charcoal",1);};
R_Date("AA-26654",10710,85){z=333.0;Outlier("Charcoal",1);};
R Date("AA-27486",11900,80){z=331.0;Outlier("Charcoal",1);};
            R Date("AA-25778",10260,85){z=328.0;Outlier();color="red";};
Date("Top of YDB"){z=327.0;Outlier("Charcoal",1);};
R Date("AA-27481",11160,75){z=326.0;Outlier("Charcoal",1);};
R Date("Beta-230984",10940,60){z=322.0;Outlier("Charcoal",1);};
R Date("AA-72612",10959,54){z=322.0;Outlier("Charcoal",1);};
R_Date("AA-27485",11280,75){z=322.0;Outlier("Charcoal",1);};
R_Date("AA-27488",10470,80){z=321.0;Outlier("Charcoal",1);};
R_Date("AA-72607",9960,920){z=317.0;Outlier("Charcoal",1);};
R Date("AA-75720",10896,54){z=315.0;Outlier("Charcoal",1);};
R Date("AA-29022",10430,70){z=313.0;Outlier("Charcoal",1);};
R Date("AA-27480",10340,100){z=308.0;Outlier("Charcoal",1);};
R Date("AA-27487".10400.75){z=306.0:Outlier("Charcoal".1):}:
R Date("AA-75719".10506.53){z=303.0:Outlier("Charcoal".1):}:
R Date("AA-26653",10185,75){z=298.0;Outlier("Charcoal",1);};
R_Date("AA-72610",10440,160){z=294.0;Outlier("Charcoal",1);};
R_Date("AA-72609",9924,50){z=286.0;Outlier("Charcoal",1);};
R_Date("AA-72611",9751,64){z=285.0;Outlier("Charcoal",1);};
R Date("AA-35462",9835,70){z=283.0;Outlier("Charcoal",1);};
Boundary();
};
};
```

Because the YDB sample at this site spanned 8 cm, we interpolated the ages of the upper and lower boundary of that layer. Then, we combined those dates with the all dates (except one rejected Outlier) that fell within the interval to model the YDB age. To do that, we saved the data from running the age-depth model as \*.prior files and then called out those files for the Combine code below. This procedure was followed for all other sites below where \*.prior files are called out.

# COMBINE

```
Plot()
{
    Combine("Big Eddy")
    {
    Prior("Base_of_YDB");
    Prior("AA_26654");
    Prior("AA_27486");
//OUTLIER Prior("AA_25778");
    Prior("Top_of_YDB");
    };
    };
};
```

## **BLACKVILLE**

AGE-SEQUENCE MODEL

```
Plot()
Sequence("Blackville")
  Boundary("Unconformity");
  Date("LB859",calBP(2011-12960),1190);
         C Date("LB861",calBP(2011-18540),1680){Outlier();color="red";};
C Date("LB862",calBP(2011-11500),1030);
R Date("Beta 307821",830,30);
  Boundary("Top");
 };
};
BLACKWATER DRAW
AGE-SEQUENCE MODEL
Plot()
Outlier Model("Carbon", Exp(1,-10,2), U(0,4), "t");
  Sequence("Blackwater, Locality 1")
  Boundary("Transition");
  Phase("Level B")
R Date("AA-2262",11810, 90){Outlier(Carbon,1);};
R_Date("AA-1375",11380, 150){Outlier(Carbon,1);};
R_Date("AA-87917",10933, 56){Outlier(Carbon,1);};
R Date("AA-30454",10914, 72){Outlier(Carbon,1);};
  Boundary("Transition");
  Phase("Level C: Clovis")
R Date("A-491",11630, 400){Outlier(Carbon,1);};
R Date("A-481",11170, 360){Outlier(Carbon,1);};
R Date("A-490",11040, 500){Outlier(Carbon,1);};
R Date("AA-89168", 10884, 67) {Outlier(Carbon, 1);};
R Date("SMU-1880",10780, 110){Outlier(Carbon,1);};
R Date("AA-1360",10580, 100){Outlier(Carbon,1);};
  Boundary("Transition C-D1= YDB");
  Phase("Level D1: Black Mat")
R_Date("AA-1362",10740, 100){Outlier(Carbon,1);};
R Date("AA-39843",10526, 70){Outlier(Carbon,1);};
R_Date("A-4701",10470, 580){Outlier(Carbon,1);};
R_Date("AA-1364",10210, 110){Outlier(Carbon,1);};
R Date("AA-1363",10160, 120){Outlier(Carbon,1);};
  Boundary("Transition");
  Phase("Level D2")
R Date("A-380",10600, 320){Outlier(Carbon,1);};
R Date("A-492",10490, 200){Outlier(Carbon,1);};
R Date("A-386",10490, 900){Outlier(Carbon,1);};
R_Date("AA-87335",10376, 50){Outlier(Carbon,1);};
R_Date("AA-86575",10281, 58){Outlier(Carbon,1);};
R_Date("AA-1370",10260, 230){Outlier(Carbon,1);};
R Date("A-1372",10250, 200){Outlier(Carbon,1);};
R Date("A-488",10200, 250){Outlier(Carbon,1);};
R Date("AA-2261",9950, 100){Outlier(Carbon,1);};
R Date("A-379",9900, 320){Outlier(Carbon,1);};
  }:
  Boundary("Transition");
  Phase("Level E")
R_Date("A-489",9890, 290){Outlier(Carbon,1);};
R Date("A-4703",10000, 910){Outlier(Carbon,1);};
```

```
R Date("AA-87338",9889, 50){Outlier(Carbon, 1);};
R Date("AA-87337",9820, 110){Outlier(Carbon,1);};
R Date("A-4705",9260, 320){Outlier(Carbon,1);};
   Boundary("");
  };
 };
BULL CREEK
AGE-DEPTH MODEL
Plot()
Outlier Model("General", T(5), U(0,3),"t");
P Sequence("Bull Creek", 0.05, 0.5)
Boundary();
R_Date("Beta-184854",11070, 60){z=307.0;Outlier(0.05);};
R Date("Beta-262540",10870, 70){z=293.5;Outlier(0.05);};
Date("Top of YDB"){z=289;Outlier(0.05);};
           R_Date("Beta-184853",10350, 210){z=270.5;Outlier();color="red";};
R_Date("Beta-262539",10640, 70){z=256;Outlier(0.05);};
R_Date("Beta-262538",10750, 70){z=239;Outlier(0.05);};
R_Date("Beta-202338",10730", 70\{2-239,Outlier(0.05),};
R_Date("Beta-180546",10850, 210)\{z=238;Outlier(0.05);\};
R_Date("Beta-262537",10410, 70)\{z=226.5;Outlier(0.05);\};
R_Date("Beta-184852",10400, 120)\{z=224.5;Outlier(0.05);\};
R_Date("Beta-184851",9850, 90)\{z=156;Outlier(0.05);\};
R_Date("Beta-191040",8670, 990)\{z=119;Outlier(0.05);\};
R Date("Beta-184850",7660, 80){z=82;Outlier(0.05);};
R Date("Beta-191039",6200, 90){z=55;Outlier(0.05);};
Boundary();
};
};
          COMBINE
Plot()
Combine("Bull Creek")
Prior("Bull_Creek_BETA_184854");
Prior("Bull_Creek_Beta_262540");
Prior("Bull_Creek_Top");
  };
 };
 };
DAISY CAVE
AGE-SEQUENCE MODEL
Outlier Model("Charcoal", Exp(1,-10,0), U(0,4), "t");
 Sequence("Daisy Cave")
Boundary("Stratum K; bottom");
Phase("Lower section")
  R_Date("Stratum J: CAMS-14369", 11700, 70){Outlier("Charcoal",1);};
Boundary("Transition J to I");
Phase("Black mat section")
  R Date("Stratum I: CAMS-9096", 11180, 130){Outlier("Charcoal",1);};
Boundary("Strata I1 and I2: YDB layer");};
Boundary("Stratum H");
Phase("Upper section")
   R Date("Stratum G: CAMS-9094",10390,130){Outlier("Charcoal",1);};
  R Date("Stratum F3: CAMS-8863",8810,80){Outlier("Charcoal",1);};
```

```
\label{eq:continuity} $$R_Date("Stratum F1: CAMS-8867",8600,60)_{Outlier("Charcoal",1);}; $$R_Date("Stratum E4: CAMS-8865",8040,60)_{Outlier("Charcoal",1);}; $$R_Date("Stratum E1: CAMS-8866",7810,60)_{Outlier("Charcoal",1);}; $$R_Date("Stratum C: CAMS-8862",6000,70)_{Outlier("Charcoal",1);}; $$R_Date(
    R Date("Stratum A3: CAMS-9095",3110,60){Outlier("Charcoal",1);};
    R_Date("Stratum A1: CAMS-8864",3220,70){Outlier("Charcoal",1);};
Boundary("Top");
   };
 };
INDIAN CREEK
AGE-SEQUENCE MODEL
Plot()
Sequence("Indian Creek")
Phase("Glacier Peak Tephra")
    R Date("Beta-4951".11125.130):
Boundary("Transition");
Phase("Reworked tephra")
Boundary("Proxy-rich layer");
Phase("Upper section")
R Date("Beta-4619",10980,110);
R Date("Beta-4620",10160,80);
R_Date("RL-7753",9870,130);
R_Date("Beta-7752",9290,120);
R_Date("Beta-7751",8340,100);
R Date("Lab # n/a",7980,80);
R Date("Beta-5117",7210,110);
Boundary("Top");
  };
 };
LAKE CUITZEO
AGE-DEPTH MODEL
Outlier Model("Carbon", Exp(1,-10,10), U(0,4), "t");
P Sequence("Lake Cuitzeo", 0.1, 0.1)
Boundary();
R Date("A 9770",42400,1000){z=910;Outlier("Carbon",1);};
                  R_Date("WW 3364",28600,140){z=665;Outlier();color="red";};
R_Date("A 9359",32565,2885){z=610;Outlier("Carbon",1);};
R Date("WW 8456",29880,280){z=535;Outlier("Carbon",1);};
R_Date("AZ 120*",26800,900){z=470;Outlier("Carbon",1);};
R_Date("WW 8455",21440,100){z=440;Outlier();color="red";};
R_Date("WW 8454",22770, 120){z=400;Outlier("Carbon",1);};
                  R_Date("WW 6423",29490,190){z=380;Outlier();color="red";};
                  R_Date("WW 3576",28289,120){z=375;Outlier();color="red";};
                  R_Date("WW 6422",23870,100){z=365;Outlier();color="red";};
R_Date("T11-M47",15500,130){z=335;Outlier("Carbon",1);};
                  R Date("WW 3375",32940,190){z=310;Outlier();color="red";};
Date("Proxies:282.5 cm"){z=282.5;Outlier("Carbon",1);};
Date("Proxies:277.5 cm"){z=277.5;Outlier("Carbon",1);};
R Date("OS-71325",10550, 35){z=277;Outlier("Carbon",1);};
                  R Date("WW 3363",27360,130){z=275;Outlier();color="red";};
                  R_Date("OS 7133C",21600,100){z=255;Outlier();color="red";};
                  R_Date("WW 3362",21730,70){z=245;Outlier();color="red";};
                  R Date("T7-M31",17605,215){z=225;Outlier();color="red";};
```

```
R Date("WW 3361",14720,50){z=205;Outlier();color="red";};
R Date("A 9354",8830,215){z=195;Outlier("Carbon",1);};
R Date("A 9353",6165,70){z=135;Outlier("Carbon",1);};
R Date("A 9352",1755,115){z=85;Outlier("Carbon",1);};
Boundary();
};
};
DATE CODE
For the date code below, we set boundaries and calculated the dates for the upper and lower depths of the YDB layer. Then,
we used the "Date" code to calculate the age between them, based on the assumption that the true YDB date occurs between
the two dates.
Plot()
Sequence("Lake Cuitzeo")
Boundary();
Prior("Cuitzeo Proxies 282 cm");
   Date("YDB age");
Prior("Cuitzeo_Proxies_277_cm");
Boundary();
 };
};
LAKE HIND
AGE-SEQUENCE MODEL
Plot()
Outlier_Model("Carbon", Exp(1,-10,5), U(0,4), "t");
Sequence("Lake Hind")
Boundary("Bottom");
Phase("Glaciated section")
         R Date("Beta-375046",43500,300){Outlier();color="red";};
         R Date("Beta-375047",36830,310){Outlier();color="red";};
Boundary("Transition 1");
Phase("Younger Dryas section")
R Date("UCIAMS 29317",10610,25){Outlier("Carbon",1);};
R Date("Beta 116994",10420,70){Outlier("Carbon",1);};
};
   Boundary("Transition 2");
  Phase("Holocene section")
R Date("TO-7692",9250,90){Outlier("Carbon",1);};
R_Date("Beta 111142",6700,70){Outlier("Carbon",1);};
R_Date("Beta 165741",5760,50){Outlier("Carbon",1);};
R_Date("Beta 165740",5780,50){Outlier("Carbon",1);};
R Date("Beta 109530",5350,50){Outlier("Carbon",1);};
R Date("Beta 109900",4090,70){Outlier("Carbon",1);};
R_Date("Beta 109529",3250,70){Outlier("Carbon",1);};
R_Date("Beta 111143",2500,40){Outlier("Carbon",1);};
Boundary("Top");
 };
};
LINDENMEIER
AGE-SEQUENCE MODEL
Plot()
{
```

Sequence("Lindenmeier")

```
Boundary("Bottom");
Phase("Level B")
R_Date("AA-51988",12170,80);
Boundary("Transition 1");
Phase("Level C")
Boundary("Interpolated");
R Date("Transition 2; I-141, YDB", 10780, 135);
Phase("Level D: Black Mat, Folsom")
R_Date("TO-337",10560,110);
R_Date("TO-342",10500,80);
R_Date("TO-338",10040,80);
R_Date("TO-339",9880,100);
R_Date("TO-341",9690,60);
R_Date("TO-340",9330,70);
 };
Boundary("Transition 3");
Phase("Level F")
        R Date("TO-344",10060,100){Outlier();color="red";};
R Date("A-749 AB",9440,180);
 Boundary("Top");
};
};
LINGEN
AGE-SEQUENCE MODEL
Plot()
Sequence("Lingen")
Boundary("Bottom");
Phase("Prior to Younger Dryas")
R_Date("Oldest Dryas-1a (Ua-382)",12930,210);
R_Date("Bølling-1b (UtC-3196)",12480,90);
R Date("Older Dryas-1c (GrN-926)",12065,120);
R_Date("Allerød-2a1 (GrN-10833)",11960,60);
R_Date("Allerød-2a2 (GrN-10883)",11600,50);
R_Date("Allerød-2b (GrN-925)",11305,120);
        R_Date("UCIAMS 46302",11310,60);
        R Date("Beta-369246",10870,40);
R Date("Allerod-2b, end (GrN-11569)",10880,50);
Boundary("Transition=YDB");
Phase("Younger Dryas and Holocene")
R Date("Younger Dryas-3a (GrN-6063)",10940,60);
R_Date("Younger Dryas-3b (GrN-17030)",10450,260);
R_Date("Younger Dryas-4a (GrN-12825)",10150,90);
R_Date("Holocene-4b (GrN-7756)",9850,90);
R Date("Holocene-4c (IRPA-185)",9740,295);
R Date("Holocene-5 (GrN-6035)",9530,55);
Boundary("Top");
 };
};
```

# **LOMMEL**

## AGE-SEQUENCE MODEL

Plot()

```
Sequence("Lommel")
Boundary();
  Phase("End Glacial")
C Date("GLL-080704",calBP(2012-15300),1100);
C Date("GLL-080714",calBP(2012-14500),1100);
};
  Boundary("Transition");
  Phase("B-A Coversands")
C_Date("GLL-080708",calBP(2012-14000),1000);
C Date("GLL-080713",calBP(2012-13700),1000);
C_Date("GLL-080716",calBP(2012-13300),1000);
C_Date("GLL-080703",calBP(2012-13300),900);
C_Date("GLL-080715",calBP(2012-12700),900);
        C Date("GLL-080707",calBP(2012-12400),900);
  Boundary("Transition");
  Phase("Usselo Horizon")
C Date("GLL-080712",calBP(2012-12400),900);
        C Date("GLL-080711",calBP(2012-10600),700){Outlier();color="red";};
R Date("UCIAMS 46303",11480,100);
};
  Date("Transition from Usselo",calBP(1950-12811),48);
  Phase("Coversands II")
C Date("GLL-080706",calBP(2012-12300),800);
C_Date("GLL-080701",calBP(2012-12000),900);
C_Date("GLL-080705",calBP(2012-11700),800);
C_Date("GLL-080702",calBP(2012-11600),800);
C Date("GLL-080710",calBP(2012-11500),800);
C Date("GLL-080709",calBP(2012-11000),700);
Boundary();
 };
};
MELROSE
AGE-SEQUENCE MODEL
Options()
 BCAD=FALSE:
 klterations=30;
Plot()
Sequence("Melrose")
C Date("LB860b",calBP(2012-11701),1846);
R Date("Beta-87422",-5,25){Outlier();color="red";};
R Date("Beta-368791",850,30);
};
};
MUCUNUQUE
AGE-SEQUENCE MODEL
Plot()
Sequence("Mucunuque (MUM7b)")
Boundary();
R_Date("TO-9278c",11850,180);
R_Date("TO-9011",11760,80);
R_Date("TO-9278a",11440,100);
```

```
Prior("Mucunuque 5 lakes");
Boundary();
};
};
COMBINE YD ONSET IN 5 AREA LAKES
Plot()
COMBINE("MUM7b, nearby lakes")
R Date("Valle Laguna Victoria".11045. 90):
R Date("Paramo de Miranda", 10954, 163);
R Date("Lake Chonita",11005, 45);
R Date("Laguna Verde Alta",11038, 165);
C_Date("Laguna de Los Anteojos",calBP(1950-12924), 80);
 };
 };
MURRAY SPRINGS
AGE-SEQUENCE MODEL
Plot()
  Sequence("Murray Springs")
  Boundary("");
Phase("Unit E")
R Date("SMU-34",13980,190);
R_Date("TX-1235",13310,190);
R_Date("I-4562",12310,170);
R_Date("SMU-33",11880,250);
R Date("SMU-18",11190,180);
};
  Boundary();
  Phase("Unit F")
R Date("TX-1044",12600,2440);
R_Date("A-805A/805B",11220,330);
R_Date("SMU-28",11210,200);
R_Date("SMU-43",11160,110);
R_Date("SMU-1463",10900,200);
R Date("SMU-29",10790,150);
   Boundary();
  Phase("Unit F, Clovis surface")
R_Date("TX-1413",11080,180);
R_Date("TX-1462",10930,170);
R_Date("SMU-27",10890,180);
R_Date("SMU-41",10840,70);
R_Date("SMU-42",10840,140);
R Date("A-1045",10760,100);
R Date("SMU-19",10740,190);
R_Date("TX-1459",10710,160);
  Boundary();
  Phase("Unit F2, Black mat at base")
R Date("AA-26212",10628,60);
R Date("A-989b",10360,90);
R Date("AA-26211",10325,44);
R Date("A-977",10250,170);
R Date("AA-26210",9823,46);
R_Date("TX-1460/1461",9820,110);
R_Date("TX-1184/1185",9820,110);
R Date("TX-1238",9810,150);
```

```
Boundary("");
 };
 };
COMBINE
Plot()
Outlier Model("Charcoal", Exp(1,-10,5), U(0,3), "t");
COMBINE("Murray Springs")
Prior("A 1045"){Outlier("Charcoal".1):}:
Prior("SMU 19"){Outlier("Charcoal",1);};
Prior("SMU 27"){Outlier("Charcoal",1);};
Prior("SMU 41"){Outlier("Charcoal",1);};
Prior("SMU_42"){Outlier("Charcoal",1);};
Prior("TX_1413"){Outlier("Charcoal",1);};
Prior("TX_1459"){Outlier("Charcoal",1);};
Prior("TX 1462"){Outlier("Charcoal",1);};
 };
OMMEN
AGE-SEQUENCE MODEL
Plot()
Sequence("Ommen")
Boundary("Bottom");
Phase("Prior to Younger Dryas")
R_Date("Oldest Dryas-1a (Ua-382)",12930,210);
R_Date("Bolling-1b (UtC-3196)",12480,90);
R_Date("Older Dryas-1c (GrN-926)",12065,120);
R Date("Allerod-2a1 (GrN-10833)",11960,60);
R Date("Allerod-2a2 (GrN-10883)",11600,50);
        R Date("UCIAMS 46307",11440,35);
R Date("Allerod-2b (GrN-925)".11305.120):
R Date("Allerod-2b, end (GrN-11569)",10880,50);
Boundary("Transition");
Phase("Younger Dryas and Holocene")
R_Date("Younger Dryas-3a (GrN-6063)",10940,60);
R_Date("Younger Dryas-3b (GrN-17030)",10450,260);
R_Date("Younger Dryas-4a (GrN-12825)",10150,90);
R_Date("Holocene-4b (GrN-7756)",9850,90);
R_Date("Holocene-4c (IRPA-185)",9740,295);
        R_Date("Beta-369946",9640,40);
R Date("Holocene-5 (GrN-6035)",9530,55);
Boundary("Top");
 };
SANTA MAIRA
AGE-SEQUENCE MODEL
Plot()
  Sequence("Santa Maira")
  Boundary(""):
  Phase("Levels 4B and II")
R Date("Beta-75226",14310, 190);
R_Date("UCIAMS-52623",12615, 99);
R_Date("Beta-156023",11920, 40);
R_Date("Beta-131579",11620, 150);
```

R Date("Beta-149948",11590, 70);

```
};
Boundary("");
Phase("YDB; Transition to YD")
{
R_Date("Beta-75225",11020, 140);
};
Boundary("");
Phase("Levels 4A and I")
{
R_Date("Beta-158014",9820, 40);
R_Date("Beta-131578",9760, 40);
R_Date("Beta-156021",9370, 40);
R_Date("Beta-156022",9220, 40);
R_Date("Beta-75224",5640, 140);
};
Boundary();
};
Boundary();
};
```

### **SHERIDEN CAVE**

## **AGE-SEQUENCE MODEL**

```
Plot()
Outlier Model("Carbon", Exp(1,-10,0), U(0,3), "t");
Sequence("Sheriden Cave")
  Boundary("");
  Phase("Unit 5A, lower")
R Date("Beta-127908b-(E)",12840,100){Outlier("Carbon",1);};
R_Date("Beta-127908a-(E)",12590,450){Outlier("Carbon",1);};
R_Date("Beta-127907-(E)",12520,170){Outlier("Carbon",1);};
R_Date("Beta-139687-(E)",11860,40){Outlier("Carbon",1);};
R_Date("CAMS-12845-(E)",11610 70){Outlier("Carbon",1);};
R Date("CAMS-12839-(E)",11570,70){Outlier("Carbon",1);};
R Date("CAMS-33968-(E)",11570,50){Outlier("Carbon",1);};
R Date("CAMS-12837-(E)",11480,60){Outlier("Carbon",1);};
};
  Boundary();
  Phase("Unit 5A upper; YDB charcoal")
R_Date("Beta-127910",10960,60){Outlier("Carbon",1);};
R_Date("Beta-127909",10840,80){Outlier("Carbon",1);};
R Date("UCI-38249-(C)",10915,30){Outlier("Carbon",1);};
  Boundary();
  Phase("Unit 5B")
R Date("CAMS-10349-(E)",11060,60){Outlier("Carbon",1);};
  Boundary();
  Phase("Unit 5C")
R Date("Beta-117607",10970,70){Outlier("Carbon",1);};
R Date("Beta-117601",10940,70){Outlier("Carbon",1);};
R_Date("Beta-117602",10850,70){Outlier("Carbon",1);};
R_Date("CAMS-26783-(E)",10850,60){Outlier("Carbon",1);};
R_Date("AA-21710",10680,80){Outlier("Carbon",1);};
R Date("Beta-117606",10620,70){Outlier("Carbon",1);};
R Date("Beta-117603",10600,60){Outlier("Carbon",1);};
R Date("Beta-117605",10570,70){Outlier("Carbon",1);};
R Date("Beta-117604".10550.70){Outlier("Carbon".1);}:
R Date("Beta-139686",10440,40){Outlier("Carbon",1);};
};
  Boundary();
  Phase("Unit 6")
R Date("AA-21706",10020,115){Outlier("Carbon",1);};
```

```
R Date("AA-21705",9775,70){Outlier("Carbon",1);};
R Date("CAMS-24127",9190,60){Outlier("Carbon",1);};
R Date("CAMS-24126",9170,60){Outlier("Carbon",1);};
  Boundary("");
 };
 };
        COMBINE
Plot()
Outlier Model("Carbon", Exp(1,-10,0), U(0,3), "t");
COMBINE("Sheriden Cave")
Prior("Beta 127909"){Outlier("Carbon",1);};
Prior("Beta 127910"){Outlier("Carbon",1);};
TALEGA
AGE-SEQUENCE MODEL
Plot()
Outlier Model("Charcoal", Exp(1,-10,0), U(0,3), "t");
Sequence("Talega")
  Boundary("");
  Phase("Level 15-13")
R Date("Beta-196153",14980,70){Outlier("Charcoal",1);};
R Date("Beta-192337",13070,40){Outlier("Charcoal",1);};
R_Date("Beta-192338",12310,10){Outlier("Charcoal",1);};
};
  Boundary();
  Phase("Level 12, YDB")
R Date("Beta-196150".11070.50){Outlier("Charcoal".1):}:
R Date("Beta-196151",11060,60){Outlier("Charcoal",1);};
};
  Boundary();
  Phase("Level 10-6")
R_Date("Beta-196155",10540,50){Outlier("Charcoal",1);};
R_Date("Beta-196154",9830,50){Outlier("Charcoal",1);};
C_Date("Beta-196152",calBP(1950-10990),220){Outlier("Charcoal",1);};
C_Date("Beta 176904",calBP(1950-10960),220){Outlier("Charcoal",1);};
C_Date("Beta-176903",calBP(1950-8885),145){Outlier("Charcoal",1);};
C_Date("Beta-172976",calBP(1950-8820),200){Outlier("Charcoal",1);};
C Date("Beta-194724",calBP(1950-8795),205){Outlier("Charcoal",1);};
  Boundary();
 };
TOPPER
AGE-SEQUENCE MODEL
Plot()
  Sequence("Topper")
  Boundary(""):
  Phase("Level 2b")
C Date("UIC764",calBP(2009-14800),1500);
C_Date("UIC837",calBP(2009-14000),1200);
};
  Boundary();
  Phase("Level 3b base, Clovis")
```

```
R Date("AA100294",10958, 65);
  Boundary():
  Phase("Level 3b")
C Date("UIC763",calBP(2009-13200),1300);
C Date("UIC1114",calBP(2009-13000),900);
C Date("UIC1115",calBP(2009-11000),800);
C Date("UIC836",calBP(2009-8000),800);
C Date("UIC1229".calBP(2009-8000).500):
C Date("UIC835".calBP(2009-7600).900):
C Date("UIC782",calBP(2009-7300),800);
C Date("UIC1228",calBP(2009-4300),300);
  Boundary();
 };
 };
SYNCHRONEITY-SEQUENCE MODEL
Plot()
Outlier Model("OLD", Exp(1,-10,1), U(0,3), "t");
Sequence("SYNCHRONICITY of YDB SITES")
   Boundary("S");
   Phase()
C Date("Meerfelder Maar",calBP(1950-12680),127){Outlier("OLD",1);};
C_Date("Hulu speleothems, CHN",calBP(2000-12820),60){Outlier("OLD",1);};
R_Date("Late glacial tree-rings, GER",10980,20){Outlier("OLD",1);};
C Date("Cariaco Basin varves",calBP(2000-12820),30){Outlier("OLD",1);};
C Date("GISP2 platinum peak",calBP(2000-12887),260){Outlier("OLD",1);};
C Date("GISP2 ice model",calBP(2000-12890),260){Outlier("OLD",1);};
C Date("GRIP GICC05 ice model",calBP(2000-12896),138){Outlier("OLD",1);};
Label("AGE OF YOUNGER DRYAS ONSET");
Prior("Santa_Maira_MD"){Outlier("OLD",1);};
Prior("Ommen_MT"){Outlier("OLD",1);};
Prior("Mucunuque_5_lakes"){Outlier("OLD",1);};
Prior("Melrose_UD"){Outlier("OLD",1);};
Prior("Lake_Cuitzeo_YDB_age"){Outlier("OLD",1);};
Prior("Blackville MD"){Outlier("OLD",1);};
Label("YDB: LOWER QUALITY");
Prior("Topper MD"){Outlier("OLD",1);};
Prior("Talega_OMD"){Outlier("OLD",1);};
Prior("Lommel_MT"){Outlier("OLD",1);};
Prior("Lingen_MT"){Outlier("OLD",1);};
Prior("Lindenmeier MD"){Outlier("OLD",1);};
Prior("Lake Hind MD"){Outlier("OLD",1);};
Prior("Indian_Creek_MT"){Outlier("OLD",1);};
Prior("Blackwater_MT"){Outlier("OLD",1);};
Prior("Barber Creek-MD"){Outlier("OLD",1);};
Label("YDB: MEDIUM QUALITY");
Prior("Sheriden Cave MOC"){Outlier("OLD",1);};
Prior("Murray Springs OMC"){Outlier("OLD",1);};
Prior("Daisy Cave MT"){Outlier("OLD",1);};
Prior("Bull Creek MC"){Outlier("OLD",1);};
Prior("Big Eddy-MC-allx1"){Outlier("OLD",1);};
Prior("Aalsterhut_MOT"){Outlier("OLD",1);};
Prior("Arlington-MT"){Outlier("OLD",1);};
Prior("Abu Hureyra MD"){Outlier("OLD",1);};
```

```
Label("YDB: HIGH QUALITY");
     };
     Boundary("E");
    };
    Difference("L","E","S");
};
```

## **DATE CODE for SYNCHRONICITY TEST**

For the Date code below, we used the prior files for the upper and lower boundaries for the synchronicity plot of the 30 dates. Then, we used the "Date" code to calculate the age between them, based on the assumption that the true YDB date falls between the upper and lower age boundaries.

```
Plot()
  {
   Sequence("Synchronicity")
  {
   Boundary();

Prior("SYNCH_START");
   Date("LENGTH OF OVERLAP");
Prior("SYNCH_END");

Boundary();
  };
};
```