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ABSTRACT
Prior to the onshore work of Empire Energy Corporation 

International (Empire) it was widely believed that the wide-
spread sheets (>650 m thick) of Jurassic dolerite (diabase) would 
not only have destroyed the many potential petroleum source 
and reservoir rocks in the basin but would also absorb seismic 
energy and would be impossible to drill. By using innovative 
acquisition parameters, however, major and minor structures 
and formations can be identified on the 1,149 km of 2D Vibro-
seis. Four Vibroseis trucks were used with a frequency range 
of 6–140 Hz with full frequency sweeps close together, thereby 
achieving maximum input and return signal. 

Potential reservoir and source rocks may be seismically 
mapped within the Gondwanan Petroleum System (GPS) of the 
Carboniferous to Triassic Parmeener Supergroup in the Tasma-
nia Basin. Evidence for a working GPS is from a seep of migrated, 
Tasmanite-sourced, heavy crude oil in fractured dolerite and an 
oil-bearing breached reservoir in Permian siliciclastics. 

Empire’s wells show that each dolerite sheet consists of 
several intrusive units and that contact metamorphism is usu-
ally restricted to within 70 m of the sheets’ lower margins. In 
places, there are two thick sheets, as on Bruny Island. One near-
continuous 6,500 km2 sheet is mapped seismically across central 
Tasmania and is expected, along with widespread Permian 
mudstones, to have acted as an excellent regional seal.

The highly irregular pre-Parmeener unconformity can be 
mapped across Tasmania and large anticlines (Bellevue and 
Thunderbolt prospects and Derwent Bridge Anticline) and 
probable reefs can be seismically mapped beneath this uncon-
formity within the Ordovician Larapintine Petroleum System. 
Two independent calculations of mean undiscovered potential 
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(or prospective) resources in structures defined so far by Em-
pire’s seismic surveys are 596.9 MMBOE (millions of barrels of 
oil equivalent) and 668.8 MMBOE. 
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INTRODUCTION

Since the publication of Burrett and Martin’s ‘Geology and 
Mineral Resources of Tasmania’ in 1989, many scientific advances 
have been made in Tasmania, one of which includes the onshore 
seismic detail of the geology below the Tasmania Basin, which has 
contributed to the evolving three dimensional map of Tasmania 
(Corbett et al, 2014). The 45,000 km2 Tasmania Basin is a typical 
Gondwana glacimarine, pericratonic basin that extends across 
30,000 km2 onshore and probably another 15,000 km2 offshore 
(Fig. 1). The petroleum potential of onshore Tasmania was recog-
nised with the mining of Tasmanite Oil Shale from 1910–35 and the 
production of a wide variety of distilled petroleum products. The 
modern search for subsurface petroleum was, however, inhibited 
by the belief that the extensive and thick sheets of dolerite (diabase) 
would have thermally destroyed any potential source rocks (e.g. 
Late Carboniferous–Permian, Woody Island Formation and Tas-
manite) and occluded porosity in potential reservoirs (e.g. Permian 
Liffey–Faulkner Groups and Lopingian coal measure sandstones, 
Fig. 2). It was also believed that the dolerite sheets would preclude 
the seismic imaging of sequences beneath the dolerite. Seismic 
surveys carried out by Empire Energy Corporation International 
(Empire) and its subsidiary companies between 2001–07, however, 
have shown that 2D Vibroseis surveys may image sequences and 
structures both within and below the Tasmania Basin (including 
the Precambrian structures on the west coast of Tasmania around 
Zeehan), and Empire’s fully cored wells have shown that the ther-
mal effects of the dolerite sheets were not as pervasive as once 
thought. Indeed, the high seismic velocities shown by the dolerite 
strongly suggests that it would have acted as a very effective seal 
except within 40–50 m of the surface where joints are open (Mul-
ready, 1995; Stacey and Berry, 2004; Leaman, 2006).

From the 1980s to the present, Empire and its subsidiary and pre-
decessor companies expended AU$56 million meeting licence con-
ditions (Great South Land Minerals Ltd, 2009), and have employed 
petroleum industry consultants to review progress on its onshore ex-
ploration and to help plan and implement exploration programs (e.g. 
Barrett, 2010; Blackburn, 2004; Carne, 1992, 1997; Mulready, 1987, 
1995; Treadgold, 2001; Wakefield, 2000; Young, 1996). Most recently, 
international consultant companies have been commissioned to 
evaluate the potential petroleum resources, audit expenditure and 
assess the potential economic value of onshore tenements based on 
Empire’s geophysical, geological, geochemical and drilling programs 
(RPS Energy 2008, 2009; Anderson and Schwab, 2004; Hockfield and 
Eales, 2013; Odedra et al, 2013; WHK Denison Ltd, 2009).
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The aim of this paper is to briefly summarise some of the evi-
dence for the petroliferous nature of onshore Tasmania, and pro-
vide examples of the range of major structures and sequences 
that have been imaged and interpreted during Empire’s surveys 
and discuss their relevance to both the geological history and 
petroleum exploration in the state. A summary of the calculated 
potential (or prospective) undiscovered resource within the seis-
mically identified structures is also included.

Onshore Tasmania geological summary

The geological history of onshore Tasmania has been sum-
marised by Stacey and Berry (2004), and most recently by 
Corbett et al (2014). Proterozoic metasediments cover much 
of the wilderness areas in northwest and southwest Tasmania. 

Younger Proterozoic sequences occur in central Tasmania and 
have been incorporated in a Devonian fold-thrust system, along 
with Cambrian volcanics and sediments and Ordovician to 
middle Devonian shelf and basinal sediments. Deformed Late 
Proterozoic quartzites-pelites-dolomites have been cored in 
two of Empire’s stratigraphic holes at Hunterston–1 (between 
980 m and TD at 1,324 m) in central Tasmania, and Shittim–1 
on Bruny Island (between 1,585 m and TD at 1,751 m; see 
Fig. 1; Bendall et al, 2000, fig. 13; Reid et al, 2003). Precambrian 
Tasmania consists of several blocks that probably originated 
near southern Laurentia (Burrett and Berry, 2000; Halpin et al, 
2014) and coalesced during the late Proterozoic and Cambrian 
(Moore et al, 2015). 

During the Ordovician, western Tasmania was a small platform 
with highlands and alluvial fans that were gradually transgressed 
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Figure 1. Extent of the Late Carboniferous-Late Triassic Tasmania Basin. The Tasmania Basin extends offshore southwards beneath the extensive south Tasmanian shelf, adapted 
from Reid and Burrett (2004). Ten stratigraphic wells—Bellevue–1 (completed to 272 m), Bridgewater–1 (252 m), Gilgal–1 (51 m), Hunterston–1 (1,324 m), Jericho–1 (640 m), 
Pelham–1 (503 m), Lonnavale–1 (557 m), Shittim–1 (1,751 m), Sorell–1 and Stockwell–1—were drilled by Empire and predecessor companies. Other wells were drilled by Mineral 
Resources Tasmania (MRT). Geological base map from MRT.
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westwards by a tropical sea leading initially to the establishment of 
a siliciclastic platform (consisting of the Lower Ordovician Deni-
son Group), followed by a carbonate platform (consisting of the 
Gordon Group) from the Middle to Late Ordovician (Calver et al, 
2014). The Gordon Group carbonates are mainly shallow water 
but deep water sedimentation is known along the southern and 
eastern margins of the platform and graptolitic shales are found 
across most of eastern Tasmania dating from the Early Ordovician 
to Early Devonian (Burrett et al, 1984; Calver et al, 2014). Platform 
carbonate sedimentation was replaced by the mainly shallow ma-
rine, siliciclastic latest Ordovician to Early Devonian Eldon and 
Tiger Range Groups. From the Ordovician to the Devonian, Tasma-
nia may be divided into Western and Eastern Tasmanian terranes 
separated by a wide belt of faults parallel to the Tamar Lineament. 
The Western Tasmanian Terrane was characterised by platform 
sedimentation from the Late Cambrian to the Early Devonian 
(the Wurawina Supergroup) and the Eastern Tasmanian Terrane 
by basinal turbidites of the Mathinna Supergroup, from the Early 
Ordovician to Early Devonian. The Early Palaeozoic successions 
were deformed in the mid-Devonian into a fold-thrust belt. Gran-
ites intruded during the Late Devonian to Early Carboniferous and 
form a horseshoe-shaped belt in the west, southwest, north and 
east of Tasmania (Seymour et al, 2014). 

The Tasmania Basin was initiated during the Late Carbon-
iferous along an axis paralleling the Tamar Lineament and sur-
rounded by the crescent of Devonian granites (Clarke, 1989). This 
north–northeast to south–southeast axis acted as a north–south 
shifting depocentre through the Permian. Initial tillite dominated 
sequences gave way to Late Carboniferous-Early Permian high to 
moderate total organic carbon (TOC) black shales (including the 
Tasmanite Oil Shale) of the Woody Island Formation, in the south 
of the basin, and Quamby Formation, further north. Glacimarine 
conditions continued to near the end of the Permian. An irregular 
Early Permian topography with considerable relief is evident in 
the modern Central Highlands area. Glaciated valleys were filled 
with tillite and younger glacimarine sequences, leaving highlands 
and islands that were progressively on-lapped by younger Permian 
sequences (Banks and Clarke, 1987). Marine conditions gave way 
to terrestrial sedimentation in the Lopingian with the deposition of 
the Cygnet Coal Measures and correlatives. Widespread fluviatile 
sands and silts were deposited during the Triassic (Reid et al, 2014).

Plant and tree-bearing Jurassic volcanogenic sandstones 
dated to 182 Ma are found at Lune River in southern Tasmania 
interbedded with basaltic andesite, which is co-magmatic with 
widespread dolerite intrusions across Tasmania (Bromfield et al, 
2007; Everard et al, 2014; Leaman, 1975). These sediments were 
intruded by dolerite during a short period from 181–180 Ma in the 
Toarcian (Everard et al, 2014). Dolerite sheets are exposed across 
about 14,500 km2, and formed—along with the Ferrar basalts of 
Antarctica—a large igneous province.

Cretaceous uplift was followed by Cenozoic terrestrial sedi-
mentation in small extensional basins such as the Longford Basin 
and Derwent Graben (Quilty et al, 2014). The morphology of the 
uplifted Central Plateau and parts of western and eastern Tasma-
nia were modified by glacial erosion and sedimentation during 
the Quaternary (Colhoun et al, 2014).

Figure 2 (opposite). Summary Ordovician to Jurassic geological column for 
onshore Tasmania, adapted from Bendall et al (2000). For further details of 
Tasmanian stratigraphy see Corbett et al (2014). Traditionally, the Parmeener 
Supergroup has been informally subdivided into a lower marine sequence (Late 
Carboniferous–Sakmarian), a lower freshwater sequence (Liffey and Faulkner 
Groups; Late Sakmarian to Early Artinskian), an upper marine sequence (Art-
inskian–Guadalupian) and an upper freshwater sequence (Upper Parmeener 
Supergroup; Late Permian–late Triassic). These informal terms are sometimes 
used on the seismic interpretations as they are easily recognised seismic units. The 
Cascades Group, which is labelled on some seismic interpretations, is a correlate 
of the Berriedale Limestone plus the calcareous shales of the Nassau Formation.
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Petroleum systems onshore Tasmania

Early exploration in Tasmania was encouraged by the pres-
ence of a world-class source rock, the Tasmanite Oil Shale and 
by the presence of electrical conductivity anomalies, iodine 
anomalies, oil seeps and a breached oil-bearing reservoir (see 
Figs 3 and 4). 

Numerous oil seeps have been reported in Tasmania, and 
the geochemistry of some of these is consistent with deriva-
tion from indigenous source rocks, and several seeps were 
geochemically matched to the Gordon Group limestones 
(Bendall et al, 1991; Volkman and O’Leary, 1990). 

The seep at Lonnavale, 40 km due west of Hobart, was 
discovered in a quarry in an unusually highly fractured and 
veined Jurassic dolerite by Bottrill (2000), and subsequent 
detailed geochemistry of biomarkers showed that it is a mi-
grated, low sulphur, heavy crude derived from an anoxic Tas-
manites rich source. Methylphenanthrene maturity indices 
show that it was generated from a mature source rock with a 
vitrinite reflectance (R

0
) equivalence of 0.75–0.85 (Revill, 1996; 

Wythe and Watson, 1996) but not from a source that had been 
overheated, for instance, by proximity to a dolerite intrusion 
where much higher R

0
 vitrinite equivalent values of at least 

R
0
 1.3 should be found (Othman et al, 2001).
Outcrops of sandstones, shaley coal and siltstones south 

of Zeehan, near to the western margin of the Tasmania Basin 
(Fig. 1), are correlates of the latest Permian Cygnet Coal Mea-
sures (stippled pattern with coal above the Abels Bay Forma-
tion in Fig. 2) and ‘contain abundant brightly fluorescing oil’ 
and bitumen with a maturation level of the oil at R

0
 0.75–0.8% 

(Cook, 2003, 2007). ‘The presence of such abundant evidence 
of oils and bitumens within the Permian sections of Australia 
is unusual’ (Cook, 2003). These Zeehan outcrops are inter-
preted as a breached Late Permian reservoir containing Perm-
ian sourced oil. Oil generation and migration is suggested by 
oil inclusions in both the Zeehan and Hunterston–1 Permian 
siliciclastics (Cook, 2003, 2007; Reid et al, 2003).

Empire’s stratigraphic wells drilled on Bruny Island (Shit-
tim–1, Jericho–1 and Gilgal–1, 1,751 m, 640 m and 50 m, re-
spectively) yielded gas, condensate and oil. The induced flow 
of Shittim–1 measured at the choke manifold was 120 psi and 
bright-green oil flowed, was collected in vacuum flasks by 
independent mud loggers and tested by gas chromatograph, 
and the gas was flared (Great South Land Minerals Ltd, 2009). 
Carbon isotope analysis of the Jericho–1 methane shows that 
it is thermogenic (Bendall et al, 2000, fig. 15). The high helium 
values (up to 4.83% air corrected) along with nitrogen and 
condensate/oil up to C8 are also indicative of an oil and gas 
field source (Bendall et al, 2000, fig. 14; Burrett, 1997; Nikonov, 
1973). A chromatographic analysis of a core sample of black 
shale/slate from 1,676 m in the Shittim–1 well yielded an algal 
sourced oil with a chromatogram extremely close to that of an 
Ordovician sample from the Gordon Group limestone at Lune 
River, southern Tasmania (Burrett, 1997, fig. 8; Volkman and 
O’Leary, 1990). The oil is hypothesised to have migrated from 
the Ordovician into the Proterozoic along the near horizontal 
thrust fault separating the Parmeener Supergroup rocks from 
the underlying Late Proterozoic metamorphics (Bendall et al, 
2000; Burrett, 1997).

Further encouragement was provided by electrical con-
ductivity studies in northeast Tasmania by Parkinson and 
Hermanto (1986) and Parkinson et al (1988) along the pre-
viously geologically (rather than geophysically) identified 
Tamar Lineament (also termed the Tamar Fracture System, 
Tamar Fault Zone, Tamar Thrust, and Tamar Thrust Zone by 
various authors) that separates the Western Tasmanian from 
the Eastern Tasmanian terranes (see Figs 3 and 4). Parkinson 
and Hermanto concluded that the most likely cause of the 
conductivity anomaly: 

‘...seems to be fractured rock saturated with highly 
conducting fluids. Archie’s Law suggests that porosity of 
20–40% is necessary with a fluid conductivity of the order 
of 10 Sm-1. Fluids with such a high conductivity have been 
reported, but are generally confined to oilfields’ (Parkinson 
and Hermanto, 1986).
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Figure 3. Iodine occurrences in surface waters of Tasmania based on data supplied 
by Dr Paul Richards (from Burrett et al, 2007). Trend of Tamar Fracture (or Linea-
ment or Fault Zone)—A is based on Williams (1978) and B is based on Seymour 
and Calver (1995).
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In central Tasmania, this wide fracture zone has been con-
firmed as east dipping by teleseismic and magnetotelluric stud-
ies and coincides with an area of anomalously high surface heat 
flow (Holgate et al, 2010; Rawlinson et al, 2006).

More recently, studies on iodine in surface waters in Tasmania 
(Burrett et al, 2007) showed that high concentrations are pres-
ent close to or on the major faults in central Tasmania (Fig. 3). 
Meteorological and geochemical modelling showed that these 
inland areas should be deficient in iodine (Butler et al, 2007, 
fig. 8). Iodine is abundant in petroleum basin brines and surface 
iodine anomalies have proved useful in petroleum exploration 
(Gallagher, 1983; Kudelsky, 1977; Tedesco, 1998). The most likely 
source for the iodine anomalies shown in Fig. 3 is, therefore, from 
brines of a petroliferous basin leaking along major faults. 

The abundance of Cenozoic faults has caused many to sug-
gest that any petroleum generated within the Tasmania Ba-
sin would have leaked. A study of fault shale smear factor by 
Collings (2007), however, has shown that simple normal faults 
in Tasmania are mostly impermeable due to an infilling of 
Permian mudrocks, such as the widespread Ferntree Group, 
and are unlikely to have acted as major fluid flow conduits. As 
helium has a very small atomic radius, the abundance of helium 
in the Shittim–1 and Hunterston–1 wells at depth and below 
the dolerite is evidence for the seal characteristics of much of 
the Permian shale sequence and of the Jurassic dolerite sheets 
(Bendall et al, 2000). 

Using Bradshaw’s (1993) classification, Empire identified 
three petroleum systems in onshore Tasmania: a possible lat-
est Proterozoic (Centralian Petroleum System); an Ordovician-
Early Devonian (Larapintine Petroleum System) within the 
Wurawina Supergroup; and, a Pennsylvanian-Triassic (Gond-
wanan Petroleum System) within the Parmeener Supergroup of 
the Tasmania Basin (Bendall et al, 2000; Reid and Burrett, 2004).

The Centralian Petroleum System onshore Tasmania is based 
mainly on a helium-dry gas found in the latest Proterozoic but 
not in the Permian, in Empire’s Hunterston–1 stratigraphic well 
in central Tasmania (Great South Land Minerals, 2009). The 
Larapintine Petroleum System in Tasmania is analogous to the 
producing fields in the Amadeus Basin of central Australia and in 
the Tarim Basin of northwest China (Bradshaw, 1993; Li, 1995).

The oil-prone Gondwanan Petroleum System is considered 
more prospective than the gas, condensate and helium prone 
Larapintine Petroleum System. Maturation of the Gondwanan 
Petroleum System—as measured by vitrinite reflectance, pollen 
colour alteration, thermal alteration index (TAI) and geochemi-
cal parameters—increases towards the south of the basin, being 
undermature in the north to mature for oil in the south (Reid 
and Burrett, 2004). The Gondwanan Petroleum System in Tas-
mania is considered to be closely comparable to the producing 
Cooper Basin of central Australia and to the South Oman Basin 
of Oman (Bendall et al, 2000). 

Modern exploration in the Tasmania Basin commenced in 
1984 with the issue of exploration licence EL 29/1984. Strati-
graphic wells were drilled between 1995 and 2008 (by Empire 
and its predecessors), resulting in six wells with oil and gas 
shows and five pre-collar wells (Bendall et al, 2000; Great South 
Land Minerals, 2009; Reid et al, 2003).

SEISMIC SURVEYS

Early seismic surveys

In 1989, the Bureau of Mineral Resources (BMR, now Austra-
lian Geoscience) conducted a 2,010 km offshore multichannel 
seismic survey around Tasmania that included circumnaviga-
tion of Bruny Island in the south (Exon et al, 1989). Prelimi-
nary processing showed that Permian sediments and dolerite 

could be provisionally identified. The earliest onshore seismic 
surveys were carried out by Mineral Resources Tasmania (Lea-
man, 1978; Richardson, 1987). Richardson’s test survey, using 
explosives, showed that the seismic reflection technique could 
be used successfully in the area of North Bruny Island, that en-
ergy was transmitted through a thick dolerite sheet, and that 
good-quality reflections were obtained from below the dolerite. 
Later drilling of Shittim–1 by Empire showed that Richardson 
had correctly predicted that the low-amplitude zone at depth 
corresponded to homogenous Precambrian units (Bendall et al, 
2000). Unfortunately, the seismic data were not processed and 
remained unpublished, and the belief persisted that seismic 
reflection surveys would not work in Tasmania. 

Modern seismic surveys

The first modern onshore seismic survey was carried out by 
AGSO (Australian Geological Survey Organisation, now Geo-
science Australia) in 1995, the purpose of which was primarily 
to image deep crustal structures, and only 20 km of the survey 
was devoted to imaging shallow structures in the centre of the 
Tasmania Basin (Barton et al, 1995; Drummond et al, 2000). An 
interpretation of the seismic data of this short line, however, 
showed that where dolerite was not at the surface, dolerite mar-
gins, faults, the basal Parmeener Supergroup unconformity and 
some formations within the Parmeener Supergroup could be 
identified (Leaman, 1996; Bendall et al, 2000, fig. 16). Later, a 
teleseismic study across northern Tasmania revealed significant 
but deep differences between the Western and Eastern Tasma-
nian terranes. The Eastern Tasmanian Terrane is shown to have 
a dense, probably oceanic, crust beneath the Mathinna Group 
sedimentary rocks in contrast to the continental crust of the 
Western Tasmanian Terrane (Rawlinson et al, 2006).

The first extensive 2D seismic surveys onshore Tasmania 
were carried out by Empire in the southern hemisphere sum-
mers of 2001, 2006 and 2007, and covered a total of 1,149 line km 
using Vibroseis (Fig. 5). In the Tasmanian lowlands, it was 
possible to design straight survey lines across fields and along 
straight roads and tracks. In the Tasmanian highlands, however, 
the steep topography and the widespread presence of boulder 
fields and/or dense areas of environmentally sensitive vegeta-
tion often necessitated surveying along sinuous roads and the 
construction of new tracks.

Empire’s seismic surveys were preceded by completion and 
analysis of regional geochemical, geological, magnetic and 
gravity data bases (Leaman, 2006). These processed data were 
then overlain on digital terrain maps of Tasmania and models 
created with differing sun angles (e.g. Fig. 6a), which were 
used to identify major geological structures. This method is 
particularly useful in the Tasmania Basin because of the topo-
graphic contrast created by the weathering-resistant dolerites. 
The potential field data were then used to construct contacts 
along maximum gradients in the data. These lines or worms 
(Fig. 6b–e) are, on a horizontal plane, similar to lines drawn 
by geologists when manually interpreting potential field data 
sets. In 3D, the worms form surfaces that are a function of the 
3D geometry of rocks with contrasting properties (Archibald et 
al, 1999; Holden et al, 2000). The program identifies inflection 
points in the combined gravity and magnetic data and draws 
them as lines at different depths. Domal structures contain-
ing dolerite are easily identified with this technique due to 
the density and magnetism of the dolerite contrasting with 
sedimentary rocks of the Tasmania Basin. The Bellevue Dome 
is apparent both in a map of geology draped over topogra-
phy (Fig. 6a) and in the worms (Fig. 6b). The major domes 
and faults were therefore identified prior to Empire’s seismic 
surveys. 
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Figure 6. Tasmania with geology draped over topography with different sun angles and multiscale mapping of potential field data worms carried out by fractal graphics. Geological map is from Mineral Resources Tasmania. Digital Terrain Model is from Department of Primary Industries, Parks, Water and Environment (Tasmania). (a) Geology of Tasmania with a northeast 
sun angle, perpendicular to most structures and the Tasmania Basin axis; (b) geology and worms at 1,000–5,000 m depth; (c) geology and worms at 5,000–10,000 m; (d) geology and worms at 10,000–20,000 m; and, (e) geology and worms at 20,000–34,000 m depth. 

Continued next page.
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The seismic surveys were designed to cross the worms, faults 
and major structures at 90° to their long axis and also along the 
long axes of folds as close to structural culminations and as 
far away from identified faults as possible. Maximum reflector 
response and minimum diffraction of the signal was thereby 
achieved and, therefore, there was minimum loss of already 
weak return signals. Four Vibroseis trucks were used with a fre-
quency range of 6–140 Hz. Many full frequency sweeps close 
together achieved maximum signal input and, therefore, maxi-
mum return signal, and the truck spread ensured good contact 
and, therefore, good energy propagation into the ground.

Any background noise, such as wind and traffic, was de-
creased by stacking three seismic sweeps in the seismic ac-
quisition truck and sending the composite stack to the seismic 
processing company. The number of geophones was increased 
to further minimise noise. Extra care was taken to ensure that 
all geophones were firmly secured. The fold was increased by 
reducing the standard regional geophone spacing from 50 m 
(20 readings/km) to 20 m (50 readings/km).

The standard industry practice of shooting at 6–40/60 Hz was 
replaced by shooting the full frequency sweep, and geophone 
receiving frequencies were matched accordingly.

RESULTS

The seismic surveys conducted by Empire have shown that 
with the careful choice of acquisition parameters and spe-
cialised processing—described in the previous section and 
tabulated in Table 1—the sub-dolerite structures may be suf-
ficiently imaged to determine a structural history and to delin-
eate prospects and leads.

Important results of Empire’s seismic surveys are shown in 
Figures 7–20. These surveys have been tied to surface geology 
(Fig. 8) and to the results of deep stratigraphic drilling by Em-
pire (Shittim–1, Hunterston–1 and other wells shown in Fig. 1; 
Bendall et al, 2000; Reid et al, 2003) and by Mineral Resources 
Tasmania (Fig. 1). Interpretations were refined using crooked 
line processing and the seismic velocities measured in a down-
hole seismic survey of Empire’s Hunterston–1 well by Stacey 
(2004). Measured velocities for the following stratigraphic units 
are:
• Ferntree Formation (4,100 m/s);
• top dolerite (5,170 m/s);
• intermediate dolerite (7,190–6,040 m/s);
• basal dolerite (6,550 m/s);
• Cascade Group (5,190 m/s);
• Liffey Group (4,160 m/s); and,
• Bundella Formation (4,350 m/s). 

The high quality of Empire’s seismic across the Cenozoic ter-
restrial infill of the Longford Sub-basin (or Longford Basin) al-
lowed Lane (2002) to construct isopachs (see fig. 9.29 in Quilty 
et al, 2014) and to recognise and map six sedimentary seismic 
packages and correlate these with drill hole logs (Fig. 7). 

Pre-Tasmania Basin rocks were deformed during the Middle 
Devonian Tabberabberan Orogeny (Seymour et al, 2014). The 
rocks beneath the Cenozoic Longford Basin (Longford Sub-
basin in Fig. 1) consist of a series of stacked thrusts dipping 
northeast. This zone is about 40 km wide and coincides with 
the trend of the Tamar Fracture System. To the west and south-
west of the Longford Basin, the structural style is progressively 
modified from thrusts and through thrusts and folds to a region 
dominated by large folds such as the Bellevue Anticline and 
prospect (see Figs 10 and 11).

Numerous structures seen on the seismic sections are ei-
ther prior to or coeval to the intrusion of dolerite in the Early 

Jurassic. Both extensional and compressional structures are 
observed. Events associated with the break-up of Gondwana 
are responsible for the gross modern morphology of Tasmania. 
Uplift in the Middle to Late Cretaceous followed by significant 
east–northeast extension was associated with the opening 
of the Tasman Sea. Faults and folds related to this series of 
events are the most numerous in the seismic sections. Many 
of the faults interpreted from the seismic data in the Tasma-
nia Basin are probably reactivated or located over faults in the 
pre-Parmeener Supergroup rocks.

Figure 8 shows an interpretation of a structurally simple seis-
mic line along the road from northern Tasmania southwards 
on to the Central Highlands dolerite plateau. More structural 
complexity is evident along other lines following roads from the 
Midland lowlands to the Central Highlands dolerite plateau. 
Figure 9 shows a section from the lowland Midlands of Tasma-
nia westwards to the highlands. Thrust Zone 2 is interpreted as 
a Permian growth fault and a considerable thickening of Perm-
ian strata is evident on the eastern side of the fault (Stacey and 
Berry, 2004). This normal fault was subsequently thrusted and 
later converted to a transcurrent fault in post-dolerite (i.e. post 
Early Jurassic) times (Blackburn, 2004). Thus, the present tran-
sition from the central lowlands to the highlands appears to be 
a long-lived feature with it being close to or coincident with an 
Ordovician carbonate platform edge, the boundary between 
Western and Eastern Tasmanian terranes, and the transition 
from Early Permian land to basinal sedimentation.

Seismic imaging of the Gondwanan Petroleum 
System 

The Gondwanan Petroleum System in Tasmania has been 
described by Bendall et al (2000) and Reid and Burrett (2004). 
Structural traps within the Gondwanan Petroleum System con-
sist of shallowly dipping domes above older steeper domes—as 
at Bellevue and Thunderbolt—or as anticlines or fault traps, 
as in the leads and prospects shown in Figure 12. Many of 
these structures are Cenozoic in age, though a more precise 
age cannot be ascertained and some are Jurassic in age (see 
Figs 10 and 11). Reid et al (2003) showed that deformation of 
the Upper Parmeener Group in central Tasmania either pre-
ceded or was coincident with dolerite intrusion in the Early 
Jurassic. Exploration is focusing on defining Jurassic-age traps 
as all thermal modelling has shown that maximum hydrocar-
bon generation was mid-Cretaceous (Bendall et al, 2000; Reid 
et al, 2003). Given the complex structural history of some areas 
in Tasmania, however, there is scope for petroleum migration 
and filling of Cretaceous-Cenozoic traps.

Exploration is focusing on situations where potential reser-
voirs are at a distance from intrusive sheets of dolerite. Empire’s 
seismic surveys show that one major sheet extends across most 
of central Tasmania (see Figs 10 and 11) and its very high seis-
mic velocity indicates that this would make an excellent region-
al seal. Empire’s fully cored stratigraphic wells at Shittim–1 and 
Hunterston–1 showed that the thick (>650 m) dolerite sheets 
are composite with many internal contacts between different 
grainsize textures (Bendall et al, 2000; Reid et al, 2003). The dol-
erites, therefore, intruded in several pulses and obvious contact 
metamorphic effects such as calc-silicate hornfels are limited to 
20 m below the dolerite sheet at Hunterston–1 (Reid et al, 2003). 
If the dolerite had intruded in one intrusive event, pronounced 
contact metamorphic events would be expected at distances 
of up to 1,000 m or more from the dolerite sheet (Holford et al, 
2012). Moreover, vitrinite reflectance values from samples at 

Continued from previous page.
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65 m beneath the Hunterston dolerite do not indicate elevated 
temperatures. The porosity of the Liffey Group, 60 m below the 
dolerite, has been substantially reduced by secondary calcite 
cementation. The basal Permian conglomerate (not tillite), 
however, has had dolomite clasts dissolved, presumably by 
circulating hydrothermal fluids, thereby forming an excellent 
potential reservoir with a mean porosity of 16.9% and a mean 
permeability of 6,323 mD (Reid et al, 2003). 

Vibroseis source
Acquisition type Sercel 388 24 Bit Telemetry System

Energy source Three input-output 42,000 lb (19,051 kg) peak force 6 × 6 truck-mounted vibrators online

Vibrator point interval 20 m

Vibrator array 15 m pad-pad/no moveups

Vibrator array location Centred on station pegs (centred at shot point 100)

Receivers 12 × 10 Hz SM24 Geophones per group

Receiver interval 20 m

Receiver array 20 m (12 phones with 1.67 m phone spacing)

Receiver array location Centred between stations (centered at SP 100.5)

Sweep length 12 sec sweeps

Number of sweeps Two 12 sec sweeps per velocity point

Sweep type Monosweep

Sweep frequencies 6–140 Hz

Sweep taper 200 ms taper

Sweep energy per km 1,200 sec/km or 800 sec/km

Sweep control Pelton Advance 2 Model 5

Accelerometers Pelton M5 High Performance

Similarity system Pelton VIBRA-SIG

Peak force 44,000 lbs (20,000 kg)

Hold down weight 44,200 lbs (20,048 kg)

Vibrator drive level Force control on—80% peak force

Phase lock Ground force phase lock

Number of channels 300 channels

Spread geometry Symmetric split spread

Maximum offset 2,990—10—0—10—2,990 m

Fold 150 fold with 10 m common depth point interval

Record length 6.0 sec

Correlation sample rate 2 ms

Written to tape source receiver 2 ms

Table 1. Acquisition parameters used in Empire’s onshore Tasmania seismic surveys. 

Continued next page.
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Figure 8. Seismic section along Empire seismic line TB01-TH, tied to surface geology along the road on to Central Plateau and to MRT stratigraphic well Golden Valley–1. (Blackburn, 
2004). Note that individual units within the Pennsylvanian-Triassic Parmeener Supergroup, the base of the dolerite sheet and the basal Parmeener Supergroup unconformity are 
readily identified on the seismic section and correlated to outcrops along the road.
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Figure 10a and b. Composite east–west seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Quaternary sediments. Figure 10 continued on next page.
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the Lower Parmeener Supergroup lies beneath the dolerite sill, which intruded at the boundary between the Upper and
Lower Parmeener Supergroups, generally at or near the top of the "Lower Marine Sequence".
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Figure 10c and d. Continued from previous page. Composite east–west seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Quaternary 
sediments. Figure 10 continued on next page.
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Continued from previous page.

Figure 10e. Continued from previous page. Composite east–west seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Quaternary sediments. 
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Figure 11a and b. Composite north–south seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Quaternary sediments. Figure 11 continued 
on next page.
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Figure 11c, d and e. Continued from previous page. Composite north–south seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Qua-
ternary sediments. Figure 11 continued on next page.
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Figure 11f and g. Continued from previous page. Composite north–south seismic cross-section across Tasmania. Red is basal Parmeener Supergroup unconformity, blue is Lower Parmeener Supergroup (late Carboniferous–Permian), green is Upper Parmeener Supergroup (latest Permian to Triassic), dark orange is Jurassic dolerite, orange is Cenozoic basalt, and light brown is Quaternary sediments.
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Figure 12. Location of some Gondwanan Petroleum System leads and prospects (Hockfield and Eales, 2013). Blue is leads and prospects, cross-hatched areas are prospects Bellevue 
and Thunderbolt. Green is part of the EL14/2009 licence boundary, red is former proposed licence boundary application, black is Special Exploration Licence 13/98 licence boundary 
2004–09 second five-year term.
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Figure 13. Summary of Gondwanan Petroleum System in Tasmania (Global Exploration Services, 2013).
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Seismic imaging of the Larapintine Petroleum 
System 

The Larapintine Petroleum System in Tasmania (Bendall 
et al, 2000) is based on Ordovician black shales and micritic 
limestones as potential sources, enhanced porosity platform 
carbonates and coral-stromatoporoid reefs as potential reser-
voirs, and Ordovician micrites and Silurian-Devonian shales 
as seals (Fig. 15). A reef-rimmed carbonate platform is con-
firmed in southern Tasmania (Burrett et al, 1981, 1984) and it is 
likely that the reefs identified on the seismic (Fig. 17) within the 
Gordon Group carbonates in the east of the Bellevue lead and 
at the Thunderbolt lead are also close to the platform margin 
(Fig. 15). There is considerable potential for palaeokarst traps 
(Fig. 11) beneath the tillites and shales of the basal Parmeener 
Supergroup unconformity as, in a few places, Gordon Group 
limestones were karsted in the Devonian, and Devonian cave 
deposits have been palynologically dated (Seymour et al, 2014). 
Seal for these potential palaeokarst reservoirs is provided by 
latest Carboniferous to Asselian tillites and shales, above the 
unconformity, at the base of the Parmeener Supergroup. Other 
large Tabberabberan (Devonian) structures, such as the Der-
went Bridge Anticline, are evident on the seismic lines (Fig. 10) 
but need to be defined by cross lines. The Ordovician sequenc-
es, fauna and flora are comparable with those in the produc-
ing fields of the Tarim Basin of northwest China (Bendall et al, 
2000; Li, 1995), which was also part of Greater Gondwana in the 
Ordovician and connected by shallow seas to the Larapintine 
Seaway of central Australia (Burrett et al, 1990).

POTENTIAL OR PROSPECTIVE RESOURCES 

The estimated mean undiscovered potential resource (or 
estimated undiscovered prospective resource) of the Larapin-
tine and Gondwanan petroleum system structures have been 
independently evaluated by RPS Energy (2008, 2009), Odedra 
et al (2013) and Hockfield and Eales (2013), and summarised 
in Tables 2 and 3. Volumetrics were calculated using Kingdom 
Suite software and a range of likely porosity and permeability 
scenarios were input into standard petroleum industry soft-
ware. For resource definitions, Empire’s external consultants 
used definitions and guidelines set out in the Petroleum Re-
sources Management System prepared by the Oil and Gas Re-
serves Committee of the Society of Petroleum Engineers (Soci-
ety of Petroleum Engineers, 2007). These have been used along 
with London Stock Exchange Alternative Investments Market 
(AIM) guidelines (London Stock Exchange, 2009) and Austra-
lian Stock Exchange Disclosure Rules (2012). 

 Fault traps and relatively small anticlinal traps within the 
Gondwanan Petroleum System contain an estimated mean un-
discovered potential resource (or best estimate undiscovered 
prospective resource) of 221.8 MMBOE (RPS Energy 2008, 2009) 
or 144.7 MMBOE (Hockfield and Eales, 2013). The two large 
anticlinal structures (Bellevue and Thunderbolt prospects, see 
Fig. 12 for localities) have, so far, been seismically delineated in 
the Larapintine Petroleum System and are estimated to have a 
mean undiscovered potential resource (or best estimate pro-
spective resource) of 447 MMBOE (RPS Energy 2008, 2009) or 
452 MMBOE (Odedra et al, 2013). The total estimated mean 
undiscovered potential resource (or best estimates of undis-
covered prospective resource) in structures seismically identi-
fied by Empire are 668.8 MMBOE (RPS Energy, 2008, 2009) and 
596.9 MMBOE (Hockfield and Eales, 2013; Odedra et al, 2013).

Figure 15. Larapintine Petroleum System onshore Tasmania summary (Global 
Exploration Services, 2013). Maturity based on conodont geothermometry 
(Burrett, 1992).

Continued from previous page.
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Figure 18. Seismic two-way time (TWT) map of Bellevue prospect (Odedra et al, 2013). Bellevue–1 was cased and cemented to 234 m; Bellevue–2 is planned. See Figure 12 
for location and Figure 5 for seismic line location.
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Figure 20. Seismic TWT map of the Thunderbolt prospect (Odedra et al, 2013). Position of the planned well Thunderbolt–1 is shown. See Figure 12 for location and Figure 5 
for seismic line localities.

Continued next page.

Prospect/lead Low estimate (P90) Best estimate (P50) High estimate (P10) Mean 
Bellevue Upper 38 151 484 220
Bellevue Lower 24 95 307 139

Thunderbolt 12 53 198 88
Bracknell Dome 3 18 90 37

Butler’s Rise 2 14 63 25
Interlaken 2 10 40 17

Cressy 3 12 48 21
Hummocky Hills 5 30 138 58
Macquarie River 3.5 13.1 42.4 19.7

Nile River 3.5 13.1 42.4 19.7
Quamby 0.4 1.5 5.0 2.3
Steppes 2.0 7.4 24.0 11.1
Stockwell 2.0 7.4 23.6 11.0

Total (MMBOE) 100.4 425.5 1,505.4 668.8

Table 2. Prospective Undiscovered Resources Assessment for Licence SEL13/98. See Figure 12 for localities of leads and prospects. 
Units are in MMBOE.

Source: RPS Energy (2008).
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CONCLUSIONS

Despite considerable scepticism from many in the Austra-
lian geoscience community, the Vibroseis reflection seismic 
technique may be used effectively in Tasmania. Four Vibroseis 
trucks were used with a frequency range of 6–140 Hz and full 
frequency sweeps close together achieved maximum input and 
return signal. Numerous structures have been interpreted on 
the seismic sections. In particular, the faults near the junction 
of the Western and Eastern Tasmanian terranes define a broad 
belt of reactivated faults rather than a simple lineament. Reac-
tivation from thrust to normal to transcurrent movement was 
probably due to the changing Australian plate stress regime act-
ing on the margins of crustal blocks with differing rheological 
properties (Muller et al, 2012). The Western Tasmanian Terrane 
has a rheologically stronger crust underlain by thick and rigid 
Precambrian, whereas the Eastern Tasmanian Terrane consists 
of more easily deformed Mathinna Group turbidites overlying 
dense, probably oceanic, crust (Rawlinson et al, 2006). The ter-
rane marginal fault belt is coincident with surface water iodine 
anomalies, suggesting that petroleum basin brines have leaked 
from depth. Elsewhere in the Tasmania Basin, a study of fault 
shale smear factor by Collings (2007) has shown that less com-
plex normal faults are mostly impermeable and are unlikely to 
have significantly breached most potential reservoirs. Wide-
spread Middle Permian shales and a near-continuous Jurassic 
dolerite sheet provide effective regional seals across central Tas-
mania. Because of its very low molecular size, the high values of 
helium in the C1-C8 gas beneath the dolerite in the Shittim–1 
well confirms the excellent seal characteristics of the dolerite 
(Bendall et al, 2000).

Fault traps and relatively small anticlinal traps within the 
Gondwanan Petroleum System contain an estimated mean 
undiscovered potential resource (or best estimate prospec-
tive resource) of 221.8 MMBOE (RPS Energy, 2008, 2009) or 
144.7 MMBOE (Hockfield and Eales, 2013). The two large 
anticlinal structures (Bellevue and Thunderbolt leads), so 
far seismically delineated in the Larapintine Petroleum Sys-
tem, are estimated to have a potential undiscovered mean 
resource (or best estimate prospective resource) of 447 MM-

BOE (RPS Energy, 2008, 2009) or 452 MMBOE (Odedra et 
al, 2013). Total estimates of mean undiscovered potential 
resource (or best estimate prospective resource) in structures 
seismically identified by Empire are 668.8 MMBOE (RPS En-
ergy, 2008, 2009) and 596.9 MMBOE (Hockfield and Eales, 
2013; Odedra et al, 2013). These resource estimates shown in 
Tables 2 and 3 are based on the structures identified on the 
limited seismic surveys carried out so far, and there is con-
siderable potential for the discovery of many more structures 
in future seismic surveys within both onshore and offshore 
Tasmania. 
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Prospect/Lead Low Estimate 
(P90)

Best Estimate 
(P50)

High Estimate 
(P10) Mean 
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