Potential Human Population Decline/Reorganization during the Younger Dryas in North America

Article

REAUS 2 Sauthors, including:

Albert C. Goodyear University of South Carolina

39 PUBLICATIONS 912 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Hall's Cave Texas View project

Project Search for soot and/or nanodiamonds associated with impacts or extinctions View project

ResearchGate

All content following this page was uploaded by Allen West on 28 November 2014.

The user has requested enhancement of the downloaded file.

Introduction

How abrupt, large-magnitude climate changes affect different species, including our own, is a subject of considerable research interest at present, given the rapid climate change our planet appears to be undergoing. The most extreme cooling event since the last Glacial Maximum is the Younger Dryas (YD), which began about 12,900 BP (all dates are in calendar or calibrated years before present or BP, unless otherwise noted) and persisted for approximately 1300 years (Alley 2000). Whether a significant decline or reorganization in human population occurred at the start of the Younger Dryas cold period ca. 12,900 BP has been the subject of appreciable recent debate (cf., Firestone, et al. 2007, Anderson et al. 2008a, b, 2009a; Buchanan et al. 2008; Collard et al 2008; Meltzer 2009). While the reason for the onset of YD is subject to ongoing debate, that changes in climate and biota occurred in many areas is widely accepted, although how this played out in different regions, and among human populations, is not well understood. In this paper, we explore what happened to human populations in North America during the Younger Dryas using three somewhat interrelated lines of evidence: (1) Paleoindian projectile point frequency data; 2) usage patterns at 13,000-year-old lithic quarries, and 3) summed probabilities analyses of radiocarbon dates.

Climate and Culture Change: Basic Assumptions

An extensive literature documents how changes in climate affect biotic communities and human societies. Climate parameters such as the type, rate, and magnitude of change shape whether cultural change was major or minor and whether population bottlenecks or extinctions occurred. Of particular importance to human societies were how food supplies were affected, and whether there were changes in the incidence and intensity of epidemics, civil unrest, or warfare (e.g., Anderson et al. 2007; Fagan 2000, 2004; Rosen 2007; Zhang et al. 2007). A recent episode of global cooling of shorter duration than the YD was the Little Ice Age (LIA), which occurred from the 1300s to the 1800s AD. The LIA had a significant effect on human populations worldwide, with substantial population decline in some areas brought about by crop failure, civil unrest, warfare, and epidemic disease, (e.g., Fagan 2000; Kremer 1993; Zhang et al. 2007). The YD occurred when most human populations had not yet made the transition to agricultural food production, or developed organizationally large and complex societies, which were presumably more vulnerable to, but also better able to buffer, the effects of climate change. Abrupt swings in climate have occurred many times since our species emerged ca. 150-300 kyr BP (Labeyrie et al. 2003; National Research Council 2002). As such, resolving how the YD affected hunting-gathering societies is also important for understanding earlier periods of prehistory.

Analysis Results (1): Clovis and Post-Clovis Projectile Point Frequencies in North America

Paleoindian projectile points across North America occur within a number of geographically widespread, presumably contemporan on' is dated to ca. 13.050 to 12.900 BP. just pri ented bases and fluting only part way up t Prvas by a 'Full-Fluted horizon' characterized utes of the Folsom, Gainey, Barnes, Cumbe fluting either by indirect percussion or pressure ese points were in turn replaced by a wid ange of unfluted forms later in the Younger Dryas. While the post-Clovis stratigraphic place nent and absolute dating of the Folsom type well established, the temporal range of some of orms is less well documented in some regions and is made on stylistic and technologic

Figure 1. Clovis (weakly fluted) and Immediate Post-Clovis (fully fluted) projectile point forms in North America

The Paleoindian Database of the Americas, or PIDBA

Figure 3. Graph showing number of points of each major stylistic horizon from Clovis to Dalton found in

13.2?-12.9 ka? 12.9?-12.6 ka? 12.6-12 ka? 12?-11 ka

is available on-line (Figure 2), and integrates database and GIS technology to make locational data or early 30,000 projectile points, attribute data on over 15,000 artifacts, and image data on nearly 0.000 Paleoindian era points from across North merica. These data indicate a substantial drop i the numbers of artifacts and presumably people in many parts of North America during the early cent ries of the Younger Dryas. In the Southeastern U. ticularly dramatic, on the order c 50% (Figure 3). The pattern of post-Clovis decline in eastern North America appears much the same ir the central part of the continent in an area defined by twenty-one states and provinces in the Great Basin, Rocky Mountains, and Great Plains. A decline of ca. 37% occurs between Clovis and presumably related fluted forms (n=4020) and subsequent Folsom and presumably related Midland and Sedgwick types (n=2527) (Figures 4, 5). Pertinent questions in such analyses, of course, include whether changes in numbers of points represent: 1) changes in numbers of people or settlement patterns; 2) a reorganization of technology; 3) biases in the collection of points; 4) errors in point identification or dating; 5) changes in the duration of point usage, both for an individual tool and for the point style; and 6) the effect of geological factors that may affect artifact deposition and preservation. In spite of these concerns, using numbers of sites, artifacts, or radiocarbon dates as a proxy measure of human popula tion is widely used in archaeology (e.g., Miller et al. 2004; Rick 1987; Thomas 2008:440-442).

Figure 4. Clovis and presumably related fluted point distributions in the central United States (excluding Folsom). Note the visually greater abundance of these points than Folsom points, shown in Figure 5, in the same area.

the Southeastern U.S.

Figure 5. Folsom and related point distribu tions in the central United States. A clear reduction in numbers is evident compared to Clovis incidence in the same area (Figure 4).

Analysis Results (3): Summed Probability Analyses

To further test a North American population decline following Clovis, we used an analytical method based on radiocarbon dating that involves calibrating relevant 14C determinations and combining the probabilities, also known as summed probabilities distribution analysis (SPA) (Rick 1987; Housley et al. 1997). Major peaks and troughs in the trends are assumed to be proxies for human population magnitude, i.e., more 14C dates generally mean more people, and conversely, fewer dates mean fewer people. As with any analyti cal tool, SPA has drawbacks, notably collection biases, factors of sample preservation, accuracy of the dates themselves, and what individual dates represent in terms of numbers of people (e.g., Rick, 1987; Surovell and Brantingham 2007). Despite the various biases and inaccuracies, the method provides a preliminary approximation of long-term increases or declines in population levels, especially when large samples are employed. Databases employed in the analyses are referenced or noted in Table 2.

Using 14C dates from Buchanan et al. (2008), we analyzed multiple regions, including the Southeast and Great Plains. Contrary to Buchanan et al., we found an abrupt, statistically significant decline at 12.9 ka, followed 200 to 900 years later by a rebound in the number of dates. The decline at the YD onset was more than 50%, similar in magnitude to the decline in Clovis-Folsom point ratios. While calibration and sampling factors may affect the trends, this abrupt and continuing decline is large and requires explanation.

Potential Human Population Decline/Reorganization during the Younger Dryas in North America

David G. Anderson-1, Albert C. Goodyear-2, Thomas W. Stafford, Jr.-3, James Kennett-4, and Allen West-5

-1Department of Anthropology, The University of Tennessee, Knoxville, Tennessee 37996 -2 South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia, South Carolina 29208 -3 Stafford Research, Inc., Lafayette, CO, USA. -4 Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA, USA. -5 GeoScience Consulting, Dewey, AZ, 86327

We use three proxy methods to test whether climate change associated with the Younger Dryas (YD) from ca. 12,900 to 11,600 cal BP affected human populations in North America: (1) frequency analyses of Paleoindian projectile points from across the continent, (2) assemblage data from 11 Paleoindian quarry sites in the southeastern United States, and (3) summed probability analyses (SPA) of radiocarbon dates from across North America and a number of regions in the northern hemisphere of the Old World. The results of each analysis suggest that a significant decline or reorganization of human population occurred during the initial centuries of the Younger Dryas, albeit playing out somewhat differently in different regions. Settings formerly heavily utilized, such as stone quarries in the southeast, were apparently no longer heavily utilized, while over large areas a substantial decline in the numbers of diagnostic projectile points and radiocarbon estimations occurs. In the latter half of the YD a rebound in population or settlement is indicated by the projectile point and SPA datasets in a number of areas.

Altithermal SPA Results for North America (Figure 7)

We used the SPA technique to test whether or not a widely accepted decline in human and bison populations during the Mid-Holocene can be identified using this method (Figure 7). Available dates from the CARD (Canadian Archaeological Radiocarbon Database 2005) database were divided into four groups: the continental Northeast (Eastern Canada and the U.S. Northeast), the Eastern U.S., the Western U.S., and the continental Northwest (Alaska and Western Canada). The results clearly show that from around 9,000 to 8,800 BP, all regions of the continent show a major decline in 14C dates. In addition, a plot of available bison 14C dates (bottom plot) displays a distinct, nearly synchronous decline in summed 14C dates.

Younger Dryas SPA Results for North America (Figure 8)

Southeast: A significant 14C date decline is documented, followed by a rebound in the later YD that continued into the Holocene. The arrow marks a time near "a" after which there are 80% fewer dates (uncertainty of ~20%) for the next 200 years, a decline that compares well to the 50% decline displayed in the point frequency analysis.

Central North America: An SPA analysis was conducted on dates from the same twenty-one states analyzed for Folsom point frequencies. In Figure 8, the "Plains" plot reveals a decline in amplitude just after 12,900 BP at the start of the YD. The arrow indicates the begin ning of an 80% decline in 14C dates extending over the next 200 years, and these SPA results support the Clovis-Folsom projectile point declines shown in Figures 4 and 5 for central North America.

Alaska: A large increase in 14C dates is evident just before the YD at "a", followed by a rapid decline in amplitude just afterward. That decline reached its lowest level early in the YD and lasted for about 900 years until the number of dates rebounded in the late YD. The arrow identifies a time in Alaska near "a" after which there are no recorded 14C dates for more than 200 years, suggesting a major bottleneck.

North America: For the entire North American continent there is a large increase in 14C dates just before the YD at "a" followed by a rapid decline in amplitude that reached its lowest level early in the YD and continued for about 900 years. The arrow marks a 200-yearlong 80% decline in 14C dates, implying a serious drop in population The GISP2 temperature proxy profile Greenland matches reasonably well with the increases and declines in 14C dates.

Database Name	Total	Sample	Authors	References	Region Covered
Canadian Archaeological ¹⁴ C Database	14423	3190	Morlan and Betts	CARD 2009	U.S., CAN, Russia
African Database: Egypt/Sudan	890	750	Hendrickx	Hendrickx 2009	Africa: Egypt, Sudan
Near East ¹⁴ C Database	4907	1510	Böhner	Böhner 2009a	Near East
INQUA Palaeolithic Database	5898	640	Vermeersch	Vermeersch 2009	Europe
CalPal Neolithic Database	9715	1100	Böhner, Bradtmöller, Linstädter, Rollefson	Böhner 2009b	Mediterranean, MidEast, Europe
TOTAL ¹⁴ C DATES:	35833	7190			

Table 2. Databases employed in the Summed Probability Analyses.

SPA Analyses on Other Continents in the Northern Hemisphere (Figures 9-10).

European SPA Results: A drop in 14C date intensity amounting to about 35% (arrow) occurs for the 200 years following "a", with the most pronounced and deepest drop occurring after the start of the YD and lasting for 800 years before rebounding prior to the Holocene at "b".

Asian SPA results: The steepest and deepest part of an amplitude decline (arrow) occurred early in the YD at "a". The decline amounted to 80% fewer dates than in the preceding 200 years. There was a brief recovery about 600 years later in the YD.

African SPA results: Date intensity plummeted early in the YD, with dates and hence inferred population levels not increasing again for about 1300 years until the Holocene.

Middle Eastern SPA results: The 14C evidence from the Middle East during the YD is unlike those in North America, Europe, Asia, and Africa, suggesting that the region may have been a refugium.

Faunal Bottlenecks During the YD in Alaska and Across North America (Figures 11 and 12).

It is widely accepted that many genera of animals became extinct in North America in the Late Pleistocene, with the extinctions largely completed by early in the YD (e.g., Martin 1984; Grayson and Meltzer 2002). Here we examine dates for extinct and surviving species to determine what effect the YD may have had on these populations.

Alaskan SPA results. The SPA plots (Figure 11) show nearly synchronous date declines of 75% to 100% near the onset of YD (\pm 150 years). Moose, elk, and humans all display major declines in 14C dates. Bison experienced a more severe decline, virtually disappear ing from Alaska after the YD.

North American SPA results: For the continent as a whole, we compiled a SPA plot to compare 14C dates for deer (and antelope), caribou, squirrels, and shrews, as shown in Figure 12. Those dates came mostly from archaeological sites, and therefore, they may not be fully representative of overall animal population levels. In addition, the numbers of available dates are low, increasing the uncertainties. Even so, all of the plots display similar major YD-related declines in dates for surviving species.

Figure 9. Regions in the Northern Hemisphere analyzed with summed probability: North America (purple); Europe (green); Africa (yellow); Middle East (orange); and Russia (red)(References in Table 2).

Analysis Results (2): Southeastern Quarry Assemblages

Examination of archaeological assemblages from 11 major stone guarry sites used extensively during the Clovis era (and for most for much of prehistory thereafter as well) in the southeastern United States indicates immediate post-Clovis, 'Full-Fluted horizon' use of many of these quarries was minimal (Figure 6, Table 1). A major decline in popu lation or reorganization in technology and settlement away from such locations appears to have occurred. Of 11 sites examined, only one (Carson-Conn-Short) and possibly two others (Boyd-Ledford, Sinclair) show much evidence for immediate pos Clovis utilization by makers of Redstone and Cumberland points. Seven other sites have either no evidence of immediate post-Clovis usage (Wells Creek, Adams, Roeder Ezell, Big Pine Tree), or minor usage (Topper Williamson, Boyd-Ledford, Thunderbird) The sample encompasses the major know sites. Documenting Clovis and immediate post-Clovis use of quarry sites in the Southeast has not been done quickly or easily but reflects decades of collection and excavation by avocational and professional archaeologists.

Figure 6. Location of Clovis Quarry Sites Examined in the Southeas

Site	Site No.	State	: Clovis	Imediately Post Clovis	Type of Site	References
Carson-Conn-Short	40Bn190	ΤN	39 Clovis points 540 Preforms 216 Blade cores	5 Cumberland points 10 Unfluted preforms	Quarry, Workshop, Habitation	Norton & Broster 2008
Wells Creek	40Sw63	ΤN	18 Clovis points 16 Point Fragments 209 Preforms	1 nipple preform?	Workshop, Habitation	Dragoo 1973
Sinclair	40Wy111	ΤN	Clovis points, Preforms, Blades	Redstone, Beaver Lake	Quarry, Workshop	Broster & Norton 2009
Adams	15Ch90	ΚY	4 Clovis points 153 Bifaces 555 Blades 140 Blade Cores & Frags.	None	Workshop, Habitation	Sanders 1990 Gramly & Yahnig 1991 Yahnig 2004
Boyd-Ledford	15Ch236	KY	Clovis	Some Cumberland	Quarry, Workshop, Habitation	Freeman et al.1996, Yahnig 2004
Roeder	15Ch482	KY	Blade Technology	None	Quarry, Workshop, Habitation	Freeman et al.1996, Yahnig 2004
Ezell	15Ch483	KY	Blade Technology 30 Blade Cores	None	Quarry, Workshop, Habitation	Freeman et al.1996, Yahnig 2004
Williamson	44Dw1	VA	100+ Clovis points Blades	2 Redstones	Quarry, Workshop, Habitation	McCary 1951, McAvoy 2003, Peck 2004, Hill 1997
Thunderbird	44Wr11	VA	6 Clovis points Preforms	2 Instrument-assisted points	Workshop, Habitation	Gardner 1974, Johnson 1996
Topper	38AI23	SC	4 Clovis points Preforms Blades	1 Instrument-assisted point	Quarry, Workshop, Habitation	Goodyear & Charles 1984 Goodyear and Steffy 2003 Goodyear, Miller, Smallwood 2007
Big Pine Tree	38Al143	SC	2 Clovis points Preforms Blades	None	Workshop, Habitation	Goodyear 1999

Table 1. Clovis and Immediate Post-Clovis Assemblages at 11 Quarry Locations in the Southeastern United Stat

CONCLUSIONS

Our analyses indicate that serious human and animal population declines or bottlenecks, or alternatively population reorganizations (i.e., dramatic changes in settlement patterning) occurred with the onset of the YD cooling episode 12,900 years ago in some or all portions of North America. SPA analyses suggest similar declines occurred across much of the Northern Hemisphere, with the possible exception of the Middle East. In addition, SPA analyses indicate that such changes also occurred during the Altithermal beginning around 9,000 years ago and lasting for nearly 3000 years.

This is the first time that a continental pattern has been reported for the Altithermal or that a hemispheric demographic pattern has been proposed for the YD. We suggest these changes in climate and biota are related, that they occurred quickly and lasted for centuries, and may have resulted in human population declines of up to 30% to 50%. If a comparable episode occurred today, the results would be catastrophic.

REFERENCES

Amsterdam, The Netherlands.

Sciences 105(33):11651-11654

Alley, R.B. 2000. The Younger Dryas cold interval as viewed from central Groups of the second s land. Quaternary Science Reviews 19:213-226. Alley, R.B. 2004. GISP2 ice core temperature and accumulation data. IGB

PAGES/World Data Center for Paleoclimatology, Data Contribution Series #2004

013.NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. Anderson, D.G., D.S. Brose, D.F. Dincauze, M. J. Shott, R.S. Grumet, and R.C. Wald bauer. 2004. The earliest Americans (Paleoindian) theme study for the Eastern Jnited States, compiled and edited by Erika K. Martin Seibert. National Historic andmarks Survey, National Park Service, Washington D.C.

Anderson, D.G., D.S. Miller, S.J. Yerka, and M.K. Faught. 2005. Paleoindian da base of the Americas: update 2005. Current Research in the Pleistocene 22:91-92 Anderson, D.G., K.A. Maasch, and D.H. Sandweiss. 2007. Climate change and ultural dynamics: a global perspective on Mid-Holocene transitions. Elsevier,

Anderson, D.G., S.C. Meeks, A.C. Goodyear, and D.S. Miller. 2008a. Southeasterr lata inconsistent with Paleoindian demographic reconstruction. Proceedings of he National Academy of Sciences 105(50):E108

nderson, S.C. Meeks, D.S. Miller, S.J. Yerka, J.C. Gillam, A.C. Goodyear, E.N. Johar on, and A. West. 2008b. The effect of the Younger Dryas on Paleoindian occupa tions in Southeastern North America: Evidence from Artifactual, Pollen, and Radiocarbon Records. Poster presented at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 2008.

Anderson, D.G., D.S. Miller, D.T. Anderson, S.J. Yerka, J.C. Gillam, E.N. Johanson, and A. Smallwood. 2009. Paleoindians in North America: evidence from PIDBA (Paleoindian Database of the Americas. Poster presented at the Annual Meeting of the Society for American Archaeology, Atlanta, Georgia, 24 April 2009. Böhner, U. 2009a. Near East 14C Database. In B. Weninger, O. Jöris, and U. Danze

glocke, CalPal-2007. Cologne radiocarbon calibration & palaeoclimate research package. http://www.calpal.de/, accessed 2009-8-10. Böhner, U. et al. 2009b. CalPal Neolithic Database. In B. Weninger, O. Jöris, and U. Danzeglocke, CalPal-2007. Cologne radiocarbon calibration & palaeoclimate

research package. http://www.calpal.de/, accessed 2009-8-10. Buchanan, B, M. Collard, and K. Edinborough. 2008. Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of

CARD (Canadian Archaeological Radiocarbon Database). 2009. Canadian Museum of Civilization, (http://www.canadianarchaeology.ca/)

Collard, B.M., B. Buchanan, and K. Edinborough. 2008. Reply to Anderson et al.,

Jones, Kennett and West, Culleton, and Kennett et al.: Further evidence against the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences USA 2008 105:E112-E114 Fagan, B. 2000. The Little Ice Age: how climate made history. Basic Books, New

Fagan, B. 2004. The long summer: how climate changed civilization. Basic Books, New York.

Firestone, R.B. et al., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences, USA 104:16016-

Goodyear, Albert C. 2006 Recognition of the Redstone fluted point in the South Carolina Paleoindian point data base. Current Research in the Pleistocene 23:100-103.

Gravson, D.K., and D.J. Meltzer. 2002. Clovis hunting and large mammal extinction: a critical review of the evidence. Journal of World Prehistory 16, 313–359.

Guthrie, R. D. 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441:207-209. Hendrickx, S. 2009. African Database: Egypt/Sudan. In B. Weninger, O. Jöri:

and U. Danzeglocke, CalPal-2007. Cologne radiocarbon calibration & palaeoclimate research package. http://www.calpal.de/, accessed 2009-8-

lousley, R.A., C. Gamble, M. Street, and P. Pettitt. 1997. Radiocarbon evidence for the Late Glacial human recolonization of northern Europe Proceedings of the Prehistoric Society 63, 25e54.

Kremer Michael. 1993. Population growth and technological change: one million B.C. to 1990, Quarterly Journal of Economics 108:681-716: abeyrie L., J. Cole, K. Alverson, T. Stocker. 2003. The history of climate dynamics in the Late Quaternary. In: Paleoclimate, global change and the future, edited by K.D. Alverson, R.S. Bradley, and T.F. Pedersen, pp. 33-61. Springer, New York.

Martin, P.S. 1984. Prehistoric overkill: The global model. In Quaternary extinctions: a prehistoric revolution, edited by P.S. Martin and R.G. Klein, pp. 259–298. University of Arizona Press, Tucson. Meltzer, D.J. 2009. First peoples in a new world: colonizing ice age

America. University of California Press, Berkeley. Miller, M.R., and N.A. Kenmotsu. 2004. Prehistory of the Jornada Mogollon and eastern Trans-Pecos regions of West Texas. In The Prehistoric Archeology of Texas, edited by T.K. Perttula, pp. 205-265. Texas A&M University Press, College Station.

National Research Council. 2002. Abrupt climate change: inevitable surprises. Committee on Abrupt Climate Change, Ocean Studies Board, Polar Research Board, Board on Atmospheric Sciences, and Climate Division on Earth and Life Studies, National Research Council. Washington, DC: National Academy Press.

Reimer, P.J., et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1029–1058.

radiocarbon record. American Antiquity 52 (1): 55-73. Rosen, A.M. 2007. Civilizing climate: social responses to climate change in

Rick, J.W. 1987. Dates as data: an examination of the Peruvian preceramic

the ancient Near East. AltaMira Press, Lanham, Maryland. Surovell, T.A., and P.J. Brantingham. 2007. A note on the use of temporal frequency distributions in studies of prehistoric demography. Journal of

Archaeological Science 34:1868–1877. Thomas, D.H. 2008: Addressing variability in the pooled radiocarbon record of St. Catherines Island. In D.H. Thomas, Native American land-

scapes of St. Catherines Island, Georgia. Anthropological Papers of the American Museum of Natural History, 88 (nos. 1–3): 435–474. Vermeersch, P. 2009. INOUA Palaeolithic Database. In B. Weninger, O. Jöris,

and U. Danzeglocke, CalPal-2007. Cologne radiocarbon calibration & palaeoclimate research package. http://www.calpal.de/, accessed 2009-8-

Waters, M.R., and T.W. Stafford, Jr. 2007. Redefining the age of Clovis: Implications for the peopling of the Americas. Science 315:1122-1126. Zhang, D.D., P. Brecke, H.F. Lee, Y.-Q. He, and J. Zhang. 2007 Global climate change, war, and population decline in recent human history. Preceedings of the National Academy of Sciences, USA 104(49):19214-19219.

11800 11400