Kerr Watch

Number of days writer Richard Kerr has failed to inform his Science readers of the confirmation of nanodiamonds at the YDB: 3 years, 4 months, and 1 day

CT Post Calendar

April 2014
« Mar    

The Cosmic Tusk Newsletter


Modern Chinese data fits ancient Chinese records: 8th Century event…comet

A comet collided with the Earth’s atmosphere from the Constellation of Orion on 17 Jan AD 773 with coma stretched across the whole sky and disappeared within one day with ‘dust rain’ in the daytime.

– Old Tang Dynasty Book

Screen Shot 2014-01-21 at 12.37.31 PM

Mellot in Nature 2012

Eichler 2013

Miyake and Tree Rings

BBC 2012

Mysterious Abrupt Carbon-14 Increase in Coral Contributed by a Comet in 773 Ad by George Howard

Dutch Crutch: Kloosterman hits field with pit sticks


At home with Han

The Tusk has no greater admiration than our’s for Han Kloosterman. The Dutch geologist is a truly indefatigable prospector for the truth.

Han has had some recent success in his decades long effort to describe the unique nature of his local expression of the Younger Dryas Boundary, his beloved Usselo Layer. Apparently, he has discovered two additional regional expressions of the layer and has a sampling program underway — on crutches. Han long ago suffered a bout with throat cancer and has spoken through his throat for decades. Today he is better off and cancer free, but of course suffers the ravages of time, much like our planet.


PS. Today I have gotten myself a pair of crutches, as preparation for my trip to an Usselo exposure in Germany. Fieldwork on crutches – that is going to be a first for me. And I am rather proud of it.

PC, Kloosterman

ydb holland

 From Nanna Noe-Nygaard, The Geology of Denmark

Screen Shot 2014-01-19 at 12.52.29 PM

Screen Shot 2014-01-19 at 12.52.09 PM

Two galleries of Usselo photos from Kaiser

Oceans to Ice: Marine diatoms found in Greenland ice suggests pummeled planet in 530′s AD

Screen Shot 2014-01-19 at 10.00.15 PM

Earlier abstract

Link to current abstract

Dallas Abbott 2013 PP on 530′s Event and Marine Diatoms in GISP2 Ice Core by George Howard

Andes to Alps: Mahaney et al. field evidence confirms cosmic cause for Black Mat from 10,000 BC


Wrote the book

Recent Developments in the Analysis of the Black Mat Layer and Cosmic Impact at 12.8 ka

Bibs and Bios: William C. Mahaney, Leslie Keiser, David H. Krinsley, Allen West!, Randy Dirszowsky, Chris C.R. Allen, Pedro Costa

Article first published online: 6 DEC 2013
Geografiska Annaler: Series A, Physical Geography


Recent analyses of sediment samples from “black mat” sites in South America and Europe support previous interpretations of an ET impact event that reversed the Late Glacial demise of LGM ice during the Bølling Allerød warming, resulting in a resurgence of ice termed the Younger Dryas (YD) cooling episode. The breakup or impact of a cosmic vehicle at the YD boundary coincides with the onset of a 1-kyr long interval of glacial resurgence, one of the most studied events of the Late Pleistocene. New analytical databases reveal a corpus of data indicating that the cosmic impact was a real event, most possibly a cosmic airburst from Earth’s encounter with the Taurid Complex comet or unknown asteroid, an event that led to cosmic fragments exploding interhemispherically over widely dispersed areas, including the northern Andes of Venezuela and the Alps on the Italian/French frontier. While the databases in the two areas differ somewhat, the overall interpretation is that microtextural evidence in weathering rinds and in sands of associated paleosols and glaciofluvial deposits carry undeniable attributes of melted glassy carbon and Fe spherules, planar deformation features, shock-melted and contorted quartz, occasional transition and platinum metals, and brecciated and impacted minerals of diverse lithologies. In concert with other black mat localities in the Western USA, the Netherlands, coastal France, Syria, Central Asia, Peru, Argentina and Mexico, it appears that a widespread cosmic impact by an asteroid or comet is responsible for deposition of the black mat at the onset of the YD glacial event. Whether or not the impact caused a 1-kyr interval of glacial climate depends upon whether or not the Earth had multiple centuries-long episodic encounters with the Taurid Complex or asteroid remnants; impact-related changes in microclimates sustained climatic forcing sufficient to maintain positive mass balances in the reformed ice; and/or inertia in the Atlantic thermohaline circulation system persisted for 1 kyr.


The hypothesis that a cosmic impact could have generated the YD reversal is still hotly debated in the literature (Haynes 2008; Pinter and Ishman 2008; Ge et al. 2009; Kenntt et al., 2009). Recent critical reviews of the YD event by Van der Hammen and Van Geel (2008) and Broecker et al. (2010) argue, respectively, that charcoal in paleosols of the Allerød–YD transition were not caused by impact, and that the impact event, by itself, could not have caused a glacial advance lasting 1 kyr. The evidence reported here conclusively contradicts alternative hypotheses for the onset of the YD glacial advance, with the most conclusive evidence coming from aerodynamically modified Fe spherules and microspherules, melted and contorted quartz and other lithologies, and carbon mats welded to various minerals.

Loose Goose: The Bos all over the map

goose gander

Long ago the Tusk noted a fascinating 2010 missive from The Bos concerning the virtue of everyone (else) remaining intellectually flexible. Or, as he put it, having a willingness to “change your mind.” Here is the link and I have copied the text at the bottom.

The Bos’ statement has not aged well. I attended his 2009 AGU Session and I shared his admiration of Wally Broecker’s willingness to change his mind regarding YD initiation via a St. Lawrence floodway. It was kinda of neat to be there in person when a major theory took a turn with the driver at the wheel. In retrospect, though, I doubt The Bos would make his current appeal using Broecker as his example.

Here is The Bos’ concluding remark where he recommends Broecker to the YDB team as an example of a nimble intellect following the data wherever it may lead:

The Younger Dryas impact proponents would do well to follow his example.

When Scientists Actually Change Their Minds, Mark Boslough, Skeptical Inquirer, May / June 2010

And here is Broecker himself this year concerning the Younger Dryas impact in NatGeo:

“Most people were trying to disprove this,” said Wallace Broecker, a geochemist and climate scientist at Columbia University’s Lamont-Doherty Earth Observatory. “Now they’re going to have to realize there’s some truth to it”.

Did a Comet Really Kill the Mammoths 12,900 years Ago?, National Geographic online, September 10, 2013

So, The Bos makes a sanctimonious appeal to actively publishing research scientists to change their minds and drop their theory, using as his exemplar a scientific authority who later re-considers his own previously critical opinion of the same theory —  a theory to which The Bos himself remains implacably opposed?! How rich!

Perhaps The Bos should take his own advice in the New Year, personally follow Broecker’s example, and carefully re-consider the YDB impact as a legitimate subject deserving further study.

As a graduate student in 1980, I was interested in impact cratering. I had just finished reading the comet catastrophe novel Lucifer’s Hammer when Luis Alvarez, the famous physicist from Lawrence Berkeley, came to Caltech to present a colloquium on his group’s asteroid hypothesis. It made so much sense. What else but an impact could possibly cause a global climate catastrophe and mass extinction?

Many years later, I read an article that featured Wallace Broecker, the Columbia University scientist with revolutionary ideas about catastrophic climate change caused by abrupt slowdowns in ocean circulation. I was fascinated by his idea that the rapid onset of the Younger Dryas cold spell could have been caused by the collapse of an ice dam and a deluge of freshwater into the North Atlantic that shut off the Gulf Stream, stopping the flow of tropical heat to the northern continents and plunging them into ice-age conditions. He showed that there could be other causes of global catastrophes that don’t involve impacts.

I was delighted when Broecker agreed to give the opening presentation at the American Geophysical Union (AGU) session I helped organize, but I was surprised to learn that he had abandoned his famous hypothesis about the cause of the Younger Dryas. He started his presentation by reminding everyone that he used to argue that it was triggered by the flood from the ice-age Lake Agassiz, but when he flew over the route the floodwaters should have followed, he saw no geomorphic evidence for a flood. He had changed his mind!

His primary objections to the impact hypothesis were the same as his objections to the flood he had previously championed as the explanation: lack of evidence and lack of uniqueness of the Younger Dryas. Abrupt changes in climate, both warming and cooling, have happened many times, and Broecker argues that the climate system is inherently unstable. Why should only one of a long sequence of changes have such an improbable and catastrophic trigger event—whether impact or flood—when the climate system has repeatedly undergone such changes all by itself?

In his 1987 CSICOP address, Carl Sagan said, “In science it often happens that scientists say, ‘You know that’s a really good argument; my position is mistaken,’ and then they actually change their minds and you never hear that old view from them again… . I cannot recall the last time something like that has happened in politics or religion.”

Broecker’s esteem among scientists was not diminished when he changed his mind. The Younger Dryas impact proponents would do well to follow his example.

Mark Boslough was co-organizer of the AGU Younger Dryas session in December. He is a physicist at Sandia National Laboratories and an adjunct professor at the University of New Mexico.

Mark Boslough

Mark Boslough is a physicist at Sandia National Laboratories and adjunct professor at the University of New Mexico. His work on comet and asteroid impacts has been the subject of many recent TV documentaries and magazine articles. He believes that the impact risk—at its core—is primarily a climate-change risk, and he has turned his attention to climate change as a looming national security threat. The opinions expressed here are his own.

Nice Dice?: The Bos disputes Harvard


It is safe to say The Bos is becoming obsessed. Someone please count and let me know, but I believe he has four publications this year seeking to undermine the Younger Dryas Boundary Hypothesis. Over time he has published more than a dozen. Today he is back in PNAS — alone — and in the face of Harvard scientists who independently discovered to their surprise an extraordinary spike of Platinum in the Greenland ice core at precisely the point in time predicted by YDB hypothesis.

It is also fair to say The Bos has staked his professional reputation on the non-occurrence of the climate changing Younger Dryas impact. He has never hedged his bet in the least, which is an interesting position considering the nature of the purported event. Either a globe cooling cosmic encounter happened ~12,875 years ago — or it didn’t. It might take a decade or two (dammit) but the reality of the event will be determined one way or another. It has a binary quality.

If Mark Boslough has calculated wrong, he will judged one of the most damaging skeptics in the history of science. He has fought mightily, and I would argue quite spitefully, to bury an idea. Find a single example of him calling for further research into the YDB impact and I will buy you a Coke.

So as proof builds for such an impact one would certainly think he would become anxious and more hesitant. Oh, no. He publishes more! I would not be surprised if The Bos frequents Vegas. He certainly seems to have a taste for the dice.

PNAS-2013-Boslough-E5035 by George Howard

PNAS-2013-Petaev-E5036 by George Howard

Merry Christmas from the Cosmic Tusk





Halley’s Comet lays waste: Abbott at AGU on the 530′s Event

dallas abbott

Dallas Abbott

Grail Tale?

Live Science article

Baillie Year

Did a 6th Century Comet Bring Global Famine?

Evidence from tree rings and ice cores suggest that parts of Europe, Asia and North America saw protracted cooling in the 530′s, which has been linked to drought and famine. Some scientists hypothesize that Halley’s Comet may have caused this, by leaving a dust trail that the Earth later intercepted during its orbit. Dust in the air could have blocked the sun’s rays. Abbott finds evidence in ice cores drilled from Greenland: as much as 10 times more dust is found in the layer corresponding to 533 A.D. than at other intervals, she says. This dust is rich in markers of extraterrestrial origins such as nickel and iron oxide spherules. She finds that neither volcanism nor solar cycles can fully explain the cooling seen in various records during this decade. Furthermore, spikes of the ice-core dust appear to match the timing of the Eta Aquarid meteor shower, known to be triggered by Halley.

Wednesday, Dec. 11, 8 a.m.-12:20 p.m., Posters A-C Moscone South. PP31B-1869

CONTROL ID: 1810251
TITLE: What caused terrestrial dust loading and climate downturns between 533 and 540 A.D.?
AUTHORS (FIRST NAME, LAST NAME): Dallas H Abbott1, Dee L Breger3, Pierre E Biscaye1, John Arthur Barron4, Robert A Juhl2, Patrick McCafferty5
INSTITUTIONS (ALL): 1. Lamont-Doherty Earth Obs, Palisades, NY, United States.
2. Independent Researcher, Tokyo, Japan.
3. Micrographic Arts, Saratoga Springs, NY, United States.
4. USGS, Menlo Park, CA, United States.
5. Queens University, Belfast, Ireland.
ABSTRACT BODY: Sn-rich particles, Ni-rich particles and cosmic spherules are found together at four stratigraphic levels in the GISP2 ice core between 360 and 362 meters depth. Using a previously derived calendar-year time scale, these particles span a time of increased dust loading of the Earth’s atmosphere between 533 and 540 A.D. The Sn enrichments suggest a cometary source for the dust. The late spring timing of extraterrestrial input best matches the Eta Aquarid meteor shower associated with comet 1P/Halley. The increased flux of cometary dust could explain a modest climate downturn in 533 A.D. The profound global dimming during 536 and 537 A.D. cannot be explained merely by a combination of cometary dust and a modest volcanic eruption. We found tropical marine microfossils at the end 535-start 536 A.D. level that we attribute to a low-latitude explosion in the ocean. This additional source of dust is probably needed to explain the solar dimming in 536-537 A.D. In addition, we found high-latitude marine diatoms and silicoflagellates at a second time horizon, circa 538 A.D. Some of the fossils are pre-Pleistocene in age, as old as Eocene. Both of these fossil-bearing stratigraphic levels contain enrichments of nitrate and ammonium in their supernatant water.
(No Image Selected)
(No Table Selected)

Additional Details
Previously Presented Material: 10% previously presented at March 2013 meeting on Volcanism, Impacts and Mass Extinctions-material is submitted to a special GSA volume from that meeting

Contact Details
CONTACT (NAME ONLY): Dallas Abbott